(12221 * * E#RRRR RERN £ 23 * * L2122 * * HRRRE
* * * * * * * L2 K 2 * * * * *
* * * * * * * % % » * * * * *
* (22221 L2122 * * * * * L2122 * * *
* * * * * * * * * * * * *
* * * * * * * * * * * * *
* * * #RRER L2122 £3 1] * * * % *

Volume 1 Number 7

By the time you read this TCH will have gone to
another hamfest, this one in Shelby, N.C., so Hi all you
folks whom we just saw. TCH will be going to some other
hamfests with our system this fall. On September 13 we
will be at the ARRL national convention in Reston, VA at
the Sheraton Motor Inn. Hamfests in Gaithersburg, MD and

Stone Mountain, GA are also possibilities for this fall.

Upcoming articles for TCH include a series on the
IMP-16 starting with the next issue. Also, TCH now has an
Altair 8800, so issue 8 should usher in a series of

articles on I/0 and interfacing.

Now a few words about TCH’s health and our future. We
are slow (and how) in cranking these things out. Con-
sequently, we are abandoning our claim to be a monthly and
only claiming to be an "almost" monthly, i.e., we reserve
the right to publish that often if we can manage. Don’t
be upset about your hard earned coins which you sent us
however, for they will still get you the same number of
issues (12 for $6). For those of you who are already in

EREN * *

*u 1222 1222 * * *uR *an RNNE
#* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
RN HEERR * * (221 (222 * * * *
* » * * * * * * * * * * * *
* * * * * * * * * * * * * * L]
* * * * %% 1222 REN * (11] [11] []
our cassette based record keeping system, your mailing
}abel begins with "Sub #### Last ##". The number after
Lagt" is the issue number with which your subscription
expires. If this number differs from your records please

notify us immediately. If your mailing label has any
other format, hang in there; you will be in the new system
in a ccuple of months. As for TCH’s health otherwise, its
good. We now have over 1500 subscribers and have yet to
see slack in our mail. We are also planning to go to 3RD
class postage. This will make getting TCH slower but will
allow us to put out larger issues with .no increase in

postage. Also TCH is now actively seeking outside authors
and advertizers. '

One last item, TCH wants to publish a list of clubs
accross the country, so if you want your club listed drogp
us a card and you will be in our next issue. Be sure tc
include important facts such as meeting times and locat-

ions and names of club leaders.

ICH AUDIO CASSETTE STANDARD ROM
by: Richard Smith and Hal Chamberlin

The TCH audio cassette ROM provides basic support
software for the TCH universal audio cassette interface.
Functions include reading a record into a buffer in main
memory, writing a record from a buffer, IPL (initial
program load, cold start, bootstrap, etc.) from cassette
tape, and interface control on both units. At the
beginning of the ROM is a jump vector with an entry for
each of the four main functions: CTROM - read record,
CTROM+3 - write record, CTROM+6 - Control routine, and
CTROM+9 - IPL routine. This jump vector allows software
compatibility with possible updates to this program and
similar packages for the Phi-Deck by keeping the call
addresses of the routines invarient.

The read record routine reads the next record from the
tape into a user specified buffer area in memory. When
called, register A should contain a unit select mask
specifying the tape unit to be used. A mask of all zeroes
specifies unit 0 while a mask with the unit select bit
(octal 020) on specifies unit 1. Equates between the unit
number and the unit select mask are a convenient way to
keep this straight. H and L should have the address of
the buffer that will receive the data read. When the read
record routine returns, register B will contain the length
of the record read in and H & L will point to the next
available buffer word. The condition code indicates
whether a CRC error was encountered during the read.
Everything is OK if the ZERO flag is on. Note that the
read routine uses all of the registers and except for B,
H, and L they will be in an undefined state on return.

The write record routine is the exact complement of
the read routine. Register A contains the unit select
parameter as before and H & L points to the buffer to be

written from. Register B specifies the length of the
record to be written. Since errors cannot occur when
writing, the only return information is the content of H &
L which points one beyond the last byte written.

At this time the control routine does nothing except
reset the interface. It was included for future compat-
ibility with a Phi-Deck interface in which case it would
handle rewinding, beginning of tape search, etc.

The 1IPL routine can be used to read a cassette tape
file into memory and branch to it. It is particularly
useful after power on or a major crash since one needs
only to branch to it (CTROM+9) and put the appropriate
cassette into the recorder to recover. Preprogrammed into
the ROM is the address in memory to read into and jump to
after reading. The IPL program data format is simply
memory image starting from the load address. The routine
can handle multiple records so program length is unre-
stricted. It stops reading when an end-of-file record
(zero length) is encountered and branches to the program
loaded. 8080 users need not be concerned with the stack
pointer since the routine initializes it to a prepro-
grammed address. This address should be specified when
ordering the ROM. Since the 8080 predecrements the stack
pointer when pushing, the address specified should be one
more than the address of the top of the stack. This IPL

routine requires 10 stack bytes but for future compatibil-

ity a few more should be reserved. If an I/O error is

encountered during loading, the routine halts by means of
an infinite loop.

Arpendix I shows an example program which copies the
on unit 0 onto unit 1. The first step taken by the
is to reset the tape interface by calling CTCN.

a record is read into a memory buffer starting at
BUFF. This buffer should be 255 bytes long to accomodate
the longest possible records If no read errors were
detected, register B is tested for zero to determine if an
end-of-file record was read. If so, an end-of-file record
is written by calling CTWR with a length specification of
zero and the program halts. Otherwise H & L are reset to
the beginning of the buffer, A is set for unit 1, B is
left unchanged and CTWR is called to write the record just
read- The program then loops to read the next record.

Due to Murphy’s 19th law (a program is always 30 bytes
too long), the coding in the ROM can be tricky in places.
Hopefully this discussion, the detailed flowcharts, and
the commented listings for 8008 and 8080 will help. One
overriding consideration was that no memory be used for
temporary storage, i.e., all counters, pointers, etc.
should be kept in registers. In general the program
structure follows the record structure with a separate
routine for each component of the record format. Perhaps
the most common trick is to fall into an adjacent
subroutine rather than calling it if that is the last
operation to be performed, thus saving 3 bytes. Elaborate
equates are used to make the program more readable.

The control routine resets the interface by sending it
a word of all zeroes. This selects unit 0, turns off both
motors, and sets read mode.

After turning on the specified unit’s motor, the read
routine goes into a loop to search for the data ID. The
ID is located by defining a 16 bit shift register using B
(high part) and C. After shifting BC left by one and
reading the next bit from the tape into bit 0 of C, the
contents of BC are compared with the ID pattern. The only
way to have an equal compare is if the last 16 bits read
were the data ID pattern. Clever arrangement of the code
and registers results in the CRC register (registers D and
E) being zero when the ID is detected. Next, the record
length is read in. Saving the record length for use by
the calling program while also using it for a loop count
presented some problems as all of the registers were
already used. The 8080 solution is simple, push it onto
the stack. The trick on the 8008 is to save the length in
the buffer position reserved for the next byte. When a
data byte is to be stored in the buffer, the count is
loaded back into A and the byte stored from C. This works
fine as long as data is read into operable memory. When
the byte count reaches zero, the CRC is checked by simply
reading in two more bytes but not storing them. If the
CRC is zero after this, the record was OK. Finally the
motor is turned off, the CRC register is tested for zero,
and a return is made.

tape
program
Next,

CONTINUED ON PAGE 4

-

PAGE 2 LETTERS
We at TCH will publish a few of our more interesting
letters each month along with comments by the staff.

I‘m curious about the May 1975 issue. I received it
on July 7. Since it was first class are you getting
cheated by paying first class and getting bulk service?

My main reason for writing is to compliment the writer
of the May editorial. It is a damn good, well balanced
piece of journalism, even though I don‘t totally agree
with it. Hope to see more like it in future issues.

I 1like the graphics display and will probably try to
get one together in the future. Was wondering if the MP
digital display might not be interfaced with the CRT
portion of the display without too much trouble.

You guys really put together good information and
detailed descriptions--thanks.

Interested in your PC board for the cassette inter-
face, but due to vacation expenses will be unable to order
until the end of the month. If the supply is limited,
could you save me one?

Bill Fuller

No the post office isn’t cheating us, we are just slow
and tried to keep the dates on the issues sequential in
spite of that fact. For more comments see the discussion
on the front page.

Your letter and the two following are just some of the
many we received mentioning the Altair editorial. They
are typical of the opinions expressed. TCH is glad you
folks do read and care.

The MP digital display cannot be interfaced to the TCH
graphics system, however any programs written for it
should be easily convertable to run TCH's display (the
reverse is NOT true).

Cassette boards are being supplied on a continuing
basis. Notice will be given before they are discontinued.
To date over 75 units have been shipped. Also due to our
early success TCH is regrettably out of relays so do not
order them now.

Gentlemen:

As an owner of an Altair 8800 and a computer hobbyist
I would like to comment on your editorial in the May ‘75
issue of TCH.

I purchased the basic computer during the initial
promotional effort by MITS. I have always considered it
an excellent buy. Components are of good quality and the
kit assembly instructions were above average.

MITS"s marketing strategy seemed to be directed toward
the average hobbyist on a limited budget. The basic 8800
fullfilled this requirement nicely. The MITS add-ons and
peripherals are definitely overpriced and, I suspect
beyond the means of most 8800 purchasers. I happen to
agree with the "loss leader" theory.

In addition, MITS has not offered a single piece of
software at a reasonable cost. Few people have the time
and resources for software development. It should not be
necessary to point out the usefullness of a computer
without software. MIL"s MONITOR-8 package, which was free

" for the asking, showed what can be done.

additional technical data for
this should become
available at this
Another ripoff?

I have asked ' MITS for
trouble~shooting and maintenance if
necessary. Their answer "data is not
time" is somewhat difficult to swallow.

Fortunately others have tried to fill some of the
gaps: The Digital Group, MiniMicroMart, Processor Tech-
nology, and TCH of course. This should not relieve MITS
from their responsibilities implied in advertisements and
in the PE article which started it all.

Your primary concern should be a look at a system
(CPU, hardware, and software) from the standpoint of the
hobbyist. Although I agree with your editorial, this is
one point you obviously missed.

I enjoy your publication and it has helped me greatly

getting started in the micro-computer business. Hope to
see more articles on 8080 based systems. Keep up the good
work.

A. P. Stumpf
Gentlemen:

I have just received, and devoured in
first six issues of TCH. Excellent!

I particularly appreciated the editorial in issue #6.
Your analysis displays both understanding and courage.
Understanding of the interaction of economics and tech-
nology in the fast developing areas of computers and
microelectronics, and courage to present unpopular facts.
It is unfortunate, but many people find it easier or more
comforting to blame others, often "big business", than to
recognize their own motivations, or lack of foresight. We
should all firmly affix in our mind that even the ALTAIR
8800 will be obsolete, though still useful, in at most two
years. We should further recognize that even IBM can not
limit the speed or spread of technological development.

All computer hobbyists should stop and consider where
they will be, if in the next few years Digital Equipment
Corp. manages to produce the LSI-11 for about $100. We
are in an exciting field, but that excitment is because
of, not in spite of. technological progress. If we

one day, the

recognize that, in the not too distant future, home
computers will be as ubiquitous as component Hi-Fi equip-
ment; we must expect tremendous improvements in both
computer power and economies of production. As the market
expands, more and -more capital will be invested in
research and production improvements, and we will be the
beneficiaries.

Computer hobbyists should not glory in the exclusive-
ness of their hobby. They should anxiously look forward
to the entrance of many participants, because these
participants will attract real big business, and capital.

Micheal A, Sicilian

THE COMPUTER HOBBYIST
Founded October, 1974

Stephen C. Stallings - ‘Managing Editor
Hal Chamberlin - Contributing editor
Jim Parker - Contributor

Edwin Tripp - Photographer

Richard Smith - Programming consultant

THE COMPUTER HOBBYIST

is published at intervals ap-
proaching monthly near

Raleigh, N.C. The subscription
rate for 12 issues is $6.00 for persons in the U.S.A.,
U.S. possessions, Canada, and Mexico. Subscriptions in
all other countries are $8.50 per year for surface mail or
$13.50 per year for air mail. All back issues are
available and cost fifty cents each for persons in the
U.S.A., U.S. possessions, Canada, or Mexico. For all
other countries back issues cost 75 cents each by surface
mail or $1.25 each by air mail. Remittances from coun=-
tries other than the U.S.A should be in the form of a bank
or postal money order.

THE COMPUTER HOBBYIST is seeking paid contributors.
Material to be submitted should be typed or neatly written
and must not appear to be soliciting business for any
firm. For details, please inquire.

Advertizing space is available to
please inquire for rates and formats.

All correspondence should be addressed to:

interested forms.

THE COMPUTER HQBBYIST
Box 295
Cary, NC 27511

EDITORIAL
Unlike _our other articles -and commentaries the edit-

orial will be mostly opinion, sometimes that of a single
staff member, and other times that of TCH as a whole.
Reaction to the editorials, either supportive or dissent-

ing, is welcome.

Are console control panels really necessary in hobby
computer systems? By control panel I mean the array of
toggle switches, push-buttons and lights often seen on the
front panels of computers. Lets look at some history and
see how the traditional control panel evolved.

Early computers were used in much the same way a lot
of people are using their Mark-8°s and Altair’s now,
programs were entered and results obtained from the front
panel. One major difference though was that these early
machines displayed all of their registers and major logic
states as well for maintenance purpose. The control
panels on these beasts were indeed large and impressive

and still persist in the minds of the public.through the

efforts of Hollywood. Large computers now (IBM 370-168)
have all of their console functions microprogrammed and
channelled through an ordinary keyboard and alphanumeic

CRT display, no more switchs and lights.

Minicomputrs have also gone through much the same
evolution. Early ones displayed all of their registers
any of which could be loaded from the console switches.
Later the console was reduced to simply a data bus monitor
and console access was essenially restricted to memory.
Now most minicomputers are priced less console which is a
$200 to $500 optional feature.

Why the trend away from consoles? The answer is that
software and a basic I/0 device such as a teletypewriter

can provide much more convenient and extensive console
functions than even an elaborate control panel. Any
serious system is going to have the requesite I/0 device

anyway. Even a simple console emulator program (we will
call it a "DEBUG" program) allows memory - contents to be
printed and entered at typing speed, allows registers to

be examined and changed, and ‘can start user program
execution at a particular address all with simple keyboard
commands.

Powerful debugging aids are available in the more
advanced debug programs. These can take .the form of
either "trace" or "breakpoint® functions. A typical trace
routine will print the instructions executed and all of
the registers that are modified between trace limit
addresses. The trace limits are set by the user from the

keyboard. Trace routines work either by simulating ex-
ecution of the user’s program or by clever use of the
interrupt system. The major disadvantage of trace, slow
execution outside the trace limits when trace is enabled,

is avoided by the breakpoint function. Typically the user
can set one or more breakpoints at particular points in
his program with keyboard commands. When program ex-

ecution hits a breakpoint, the breakpoint address and the
registers are printed and then execution resumes. The
breakpoint routine works by inserting calls to itself in
the breakpoint 1locations and keeping track of the in-
structions replaced by the calls. Breakpoint routines are
typically smaller but require more planning to use effect-
ively. Either method substitutes nicely for single cycle
console controls and provides a written record of program
execution for detailed study. After all, large computer
users have only a memory dump after catastrophic program
failure to go on.

The fact is that microprocessors were never intended
to have consoles. For that matter, the older ones
(including the 8008 and 8080) were designed as logic
replacements and dedicated controllers rather than general
purpose computers for problem solving. These two facts
are readily apparent to an engineer who tries to design a
good console or integrate the microprocessor into a
general purpose system. Nevertheless both tasks can be
accomplished such as in the MITS system or the Mark-8
system. Considerable money is spent in either case on
console logic, quality toggle switches and buttons, and a
well 1labelled front panel. Often compromises are made to
accomodate the single cycle function without letting the
bus control logic get out of hand. As mentioned before,
any serious user of these systems has or will have the
keyboard-printer or display necessary to support a soft-
ware console and once he tries a debug program, the
hardware console may never be used again! Two interesting
side points are that most complaints about existing hobby
computers relate to console malfunctions and that the
newer systems such as SPHERE have no control panel.

How would a consoleless computer look and operate?
There would probably be three switches and two or three
lights. One switch would be a power on-off toggle, one a
reset button, and one an interrupt button. The first
light would be a power on indicator, the second would

PAGE 3
indicate when the CPU is halted and the optional third
light would indicate whether interrupts were enabled or
not. Some processors may require a start button if
interrupt doesn’t work when the machine is halted, e.g.
the IMP-16.)

Now how would one get this underendowed creature
started when the power is turned on? 1In a well designed
system, a "power on reset" circuit (POR) will effectively
press the console reset button when power is first
applied. The reset signal should go to all of the
peripherals resetting them to an idle state and it should
cause the CPU to jump to a program stored in read only
memory. At this point two possibilities exist. One is
that enough ROM 1is available to hold the entire debug
program in which case the restart procedure is complete.
The other possibility is that a small program called a
bootstrap loader is all that is in the ROM. The loader
would then proceed to read the debug program into regular
read-write memory from an input device such as a paper
tape reader, cassette, etc. and jump to it. The boot-
strap data format is generally simplified and inefficient
in order to minimize the bootstrap loader size. In either
case we now have control of the system through debug
program commands. Ideally the console interrupt button
would be seperate from the I/O.interrupt system and always
enabled. Pressing the interrupt button would cause an
"interrupt entry" into the debug program which would save
the registers, status, and return address for examination
and alteration by the wuser. A debug command would be
available for resuming execution at the point of inter-
ruption. That is all there is to it.

Some microprocessors are better adapted to this mode
of operation than others. 1In particular the Motorola 6800
and the National PACE and IMP-16 seem to be designed with
this specifically in mind. Nevertheless, any of the
popular chips can be effectively operated without a
console.

BOOK REVIEW by Hal Chamberlin

Machine Langquage Programming for the 8008, Wadsworth, Nat,
Scelbi Computer Consulting Inc., 1322 Rear Boston Post
Road, Milford, CT 86460

We have been constantly getting requests for inform-
ation and articles on basic 1level machine language pro-
gramming for all of those hobby computers out there. Well
here 1is the answer! This 168 page book has all of the
answers and guidance that a beginning programmer could
want. It is far more detailed and down to earth than even
DEC’s classic Small Handbook that until now had
been the best tutorial publication available on the
programming~ of small binary compute@trs. The coverage is so
broad and well done that some of the articles that we had
planned on programming will have to be altered or dropped
to avoid duplication.

As the title implies, the contents are directly
applicable to the 8008 microprocessor. The large number
of fully commented example programs and routines are
directly wusable on the 8008. Neither the 8080 nor any
other microprocessor was mentioned but most of the con-
cepts and techniques presented would be applicable to
other machines. Many of the added instruction functions
on the 8080 are developed as subroutines in the text, thus
where a subroutine might be called in a sample program,
the 8080 wuser could simply supply the appropriate in-
struction.

One noticable feature of the book was a complete lack
of any commercialism whatsoever. As the reader may know,
Scelbi is a manufacturer of 8008 based systems for
hobbyists and schools and also sells extensive software
for the systems. Scelbi computers are seldom mentioned
and none of the text or examples made use of or even
mentioned any particular features of the Scelbi system.
Even the chapters on input/output programming were Kkept
general; never mentioning the hardware or software tech-
niques used in Scelbi I/0 devices. In short, one would
never suspect that the book was written by a manufacturer
of the computer it describes.

The book is in the form of 8 1/2 by 11 inch pages
bound in a soft cover report binder with metal binding
tabs through the three hole punching. Offset printing of
good contrast on one side of the pure white medium weight
paper is employed. The type was obviously set on a
teletype machine in all caps with a cloth ribbon so the
character quality was not particularly good but neverthe-
less easy to read. The absence of typographical errors
indicates that the author made effective use of his editor
program. Space utilization on the printed side of the
paper was good due to single spacing and narrow margins.
Some of the simpler drawings were formed with teletype
characters much like those seen in IBM manuals.

In the introduction a very convincing (and accurate)
argument for machine language versus high level language
programming of hobby computers is presented. The first
chapter which is 21 pages long gives an original, truly
readable description of the 8008 instruction set. An
interesting approach is taken in explaining the op-codes.
Rather than utilizing binary op-codes and then having to
explain binary-to-octal conversion so early, octal op-
codes are used initially. The result is that explanation
of operation encoding is much simpler. For example, the
load register immediate instructions have the form OR6
where R is replaced with the register number to be loaded.

Now that the beginning programmer has been introduced
to the "tools" he will use, he should be ready for the
second and third chapters which discuss the steps used in
program development and some necessary programming skills.
A clear, accurate understanding of the problem to be
programmed and the desirability of a flowchart are empha-
sized as prerequisites to a smooth, rewarding program
development cycle. Number conversion is taken up as a
programming skill along with the use of memory maps and
coding sheets. Through the use of examples, the desir-
ability of using an editor and assembler for long programs
(over 100 instructions) is demonstrated. Manual coding is
developed as an actual hand assembly process so that the
use of an assembler should come quite naturally to the
reader when he becomes advanced enough to need it.

Chapter 4 will be of great value to the beginning
programmer because it is the chapter on basic programming
techniques. ‘In 37 pages the discussion proceeds from how
to clear the accumulator to development of search and sort
routines. Several utility routines, some of which sub-
stitute for 8080 instructions, are also developed in this
section and their wuse is explained. Only the simplest
search and sort algorithms that get the job done are
presented. The more advanced and efficient methods are
left to the computer science text books. The examples are
always based on actual, concrete requirements, never on
abstract or theoretical considerations.

I suspect that many people may buy this book solely
for the contents of chapter 5. This is the section on
arithmetic and is 45 pages long. The discussion starts
with multiple precision add and subtract and proceeds to
develop general purpose multiple precision add, subtract,
and complement routines. After a general discussion of
binary fractions, floating point notation is introduced.
From here to the end of the chapter the six floating point
operations (addition, subtraction, multiplication, divi-
sion, ASCII-to-float, and float-to-ASCII) are discussed in
detail and the algorithms converted into assembly language
code. In other words, chapter 5 includes a floating point
package. The four math routines were punched up and
assembled at TCH and they appear to work correctly (be
sure to consult the errata sheet supplied with the book).
We have not tried the .conversion routines but they should
work also. Extensive use is made of subroutines developed
in earlier chapters. According to the author, the code
was optimized for ease of explaination and understanding
and as a result is apt to be both time and space
inefficient. The reader is then encouraged to rewrite the
routines for greater efficiency once he thoroughly under-
stands them in the present form. Probably the greatest
speed gain will be in the multiply and divide routines and
the greatest space gain in the conversion routines.
Scelbi offers a listing with object code but no comments
to owners of the book for $5.00. It is well worth the
price if an assembler is not available.

The last four chapters discuss such diversified topics
as input/output programming, real-time programming, and
creative programming concepts. The depth of discussion is
not very great but enough is said to get the reader
thinking in the correct terms.

In summary, Machine Langquage P for the 8008
is a must acquisition for the beginning programmer,
especially a hardware man. Even the experienced program-
mer should sit down with a copy for an hour or so because
he 1is bound to discover something he has not known or
thought of before.

ONTINUED FROM PAGE 1
PAGE 4 ¢ I

The read bit routine (CTRD) waits for the clock from
the interface to make a high-to-low transition and then
reads a bit into the low order position of C shifting the
remaining bits left. The bit read is also combined with
the CRC register in DE by CTCC before returning. . Thus all
bits read will be factored into the CRC. The read byte
routine (CTRB) simply calls the read bit routine 8 times
to accumulate a new byte in register C. Due to the lack
of registers, the count is done by setting a dummy bit in
position 0 of C and calling CTRD until it is shifted into
position 7. The routine then falls into CTRD for the
eighth bit.

Operation of the write routine is similar to read.
When entered, CTWR waits until the motor busy status
becomes zero to insure a proper record gap after the last
write operation. If more than .5 second has elapsed since
the last operation, the status will already be zero so
there is no waiting. The motor on the specified unit is
then turned on and another wait on motor status is
performed before writing is started. The 32 leading ZERO
bits are written by effectively calling the write byte
routine (CTWB) 4 times with zero data. The data ID is
then written by two calls to CTWB with the appropriate
data. At this point the CRC register in DE is zeroed in
preparation for the remainder of the record. Writing of
the record length is a bit tricky in order to conserve
space. The length is first loaded into C from B and a
jump into the middle of the write data bytes loop is
taken. The byte count in B 1is incremented in order to
compensate for the additional pass thorough the bottom of
the 1loop. The. routine still works properly for zero
length and maximum length records in spite of this trick.
Since HL is incremented at the top of the loop, it will
point to the last byte written + 1 on exit. When writing
the CRC, the low half is saved in B while writing the high
half first because the act of writing the CRC also changes
the CRC. Finally the trailing zeroes are written, the
motor is turned off and a return is executed without
waiting for the motor to stop.

The write bit routine - shifts register C 1left by one
and writes the bit shifted out. The test for write busy
is done first to overlap the serialization processing with
the time necessary to write a bit. It is necessary to
read the the unit select bit from the interface so it can
be combined with the write command bits sent to the
interface. Otherwise, the unit select bit would be
destroyed. Each bit written out is combined with the CRC
as in the read bit routine. The write byte routine (CTWB)
writes register C by calling CTWD 8 times. Bit counting
is done by calling CTWD once and then appending a “"stc_"
bit in the vacated position 0. When CTWD has been called
enough times so that C contains 10 000 000, the remaining
bits have been written and the routine returns.

During the course of writing these routines, several
interesting observations were made. One was that the 8080
code was not signjificantly shorter. The two byte I/0
instructions and the all-in-registers requirement were
mainly responsible. Another was that there is a lot of
work between an operable program and a fully optimized one
(notice that we changed our minds on the organization
since issue 6). Finally, this program might serve as a
reasonable, notrivial benchmark for comparing micropro-
cessors.

APPENDIX 1

EQUATES

CASSETTE TAPE ROM (CTROM)
READ RECORD ROUTINE
WRITE RECORD ROUTINE
CONTROL ROUTINE

IPL ROUTINE

CTROM EQU

CTRR EQU CTROM+0
CTWR EQU CTROM+3
CTCN EQU CTROM+6
CTIPL EQU CTROM+9

CTUNO EQU 000Q
CTUN1 EQU 020Q

UNIT O SELECT
UNIT 1 SELECT

COPY PROGRAM

COPY: MVI A,0 RESET THE CASSETTE TAPE INTERFACE.

;
CALL CTCN H
LOOP1: LXI HL,BUFF ; READ INTO THE BUFFER A RECORD FROM
MVI A,CTUNO H CASSETTE TAPE UNIT 0.
CALL CTRR H
JNZ ERROR ; BRANCH IF AN I/0 ERROR.
MOV A,B ; BRANCH IF AN END OF FILE RECORD.
ORA A H
JZ EOF H
LXI HL,BUFF 3 WRITE OUT THE RECORD TO CASSETTE TAPE
MVI A,CTUN1 H UNIT 1.
CALL CTWR H
JMP LOOP1 ;
EOF: MVI A,CTUN1 ; WRITE THE END OF FILE RECORD TO
CALL CTWR H CASSETTE TAPE UNIT 1
HLT ; DO A DONE HALT.
JMP COPY - ; GO START ANOTHER COPY.
ERROR: HLT s DO A HARD ERROR HALT.
H

JMP ERROR

NEW PRODUCTS

With this issue we are starting a new products column.
In it we will list some of the new commercial products of
interest to the computer hobbyist. Comments made will, in
general, be condensed from the manufacturer’s literature.
Occasionally we may make a comment of our own if a
particular feature is unusually impressive. Listing in
this column, of course, does not imply endorsement of the
product by TCH.

A new, nicely packaged microcomputer kit is being
offered by Comp-Sultants. It is based on the Intel 4040
CPU chip. The basic machine has 256 bytes of program
memory, (the 4040 has separate program and data memory)
one input port, one output port, a control panel, and of
course the CPU chip. An unusual feature -is that the
entire basic machine, including the control panel, fits on
one - large PC board. The machine is housed in a handsome
but inexpensive metal cabinet. There is sufficient room
in the cabinet to expand the memory to 8K words (each 2K
memory board adds 8 I/O ports as a bonus). The basic kit
costs $275 and the assembled unit costs $375. These
prices were taken from a press release and do not agree
with the glossy sheet price of $300 and $400 respectively.

COMP-SULTANTS, Inc.
P.O0. Box 1016
Huntsville, Ala. 35807

Cramer Electronics, a well known industrial distrib-
utor of electronic components, has introduced a line of
computer kits called Cramerkits. A Cramerkit consists of
all of the parts (IC’s, resistors, caps, etc.) necessary
to build a microcomputer along with a documentation
package including circuit diagrams and wirelists. NO
interconnection hardware is supplied. The buyer is ex-
pected to build the system on wire-wrap cards or the
equivalent. Cramerkits have or will be introduced for
every major MOS microprocessor and probably some of the
bipolar microprocessors. Available now are kits for the
Intel 8080, the TI 8080, and the Motorola 6800. All kits
have 1024 bytes of RAM, 1024 bytes of eraseable ROM (using
the new 2708 . 8K bit easy-to-program eraseable PROMS), 4
input ports, 4 output ports, basic control panel, audio
cassette interface (as published in
Sept. 1975), and RS-232 or TTY current loop serial I/O.
The PROM comes with a debugging program and cassette
read/write routine already programmed in. The TI kit
includes a TMS-5501 “utopia chip" (UART, 5 interval
timers, 8 level priority interrupt control, 2 I/O ports)
whereas the other kits rely on software for these funct-
ions. The price of $495 is the same for any of the kits.
A 2708 PROM programmer kit which connects to two of the
output ports will be available shortly for around $70.

Cramer Electronics, Inc.
85 Wells Avenue
Newton, Mass 02159

USE IT FOR WHAT IT WAS INTENDED?

The Cyclops computer compatible TV camera (see Popular
Electronics February 1975) is the best example of looking
beyond the manufacturer’s spec sheet we have seen in a
long time. It seems that the "special image sensor chip"
used is simply an MK4008 1K dynamic RAM with the metal cap
replaced by a glass one. This dynamic RAM is unusual in
that reading a location does not refresh it; a special
refresh cycle is used instead. The rate of charge leakage
from the storage capacitors in the dynamic cells is
dependent on temperature and, you guessed it, ambient
light. To wuse the modified memory as an image sensor,
ONES are written into all locations. Then the memory is
scanned repetitively with a scan count maintained for each
bit position. The number of scans before a given bit
returns to ZERO is inversely proportional to the amount of
light falling on that bit.

Replacing the cap on the memory requires clean room
conditions and a controlled atmosphere. A kit including a
PC board and all parts is available however from H.
Garland, 26655 Laurel Lane, Los Altos, CA 94022 for
$55.00.

I wonder if one of the new 4K RAM’s could be used for
a 64 X 64 image sensor?

TURN ON
THE MOTOR

ZERO THE
CQMPARE
REGISTER

READ A BIT
INTO THE
COMPARE
REGISTER .

ZERO THE CRC,

READ IN
THE RECOR
LENGTH

READ IN A
DATA BYTE

STORE THE
BYTE IN THE
NEXT BUFFER
POSITION.

ey
INCR. THE

BUFFER PTR.
& DECR. 'THE

RECORD LEN.

READ IN
THE CRC

RETURN CODE
FROM THE
FINAL Cno

CASSETTE
‘ CTIPL }--——-—- TAPE IPL
ROUTINE

L —

(HL) <~
INITIAL LOAD
ADDRESS

READ IN A
RECORD
FROM UNIT
ZERO

YES

YES

CTWR

OUTPUT
THE
UNIT
$ELECT

READ IN
THE
STATUS

MOTOR
BUSY?

NO

TURN ON
THE
MOTOR

READ IN
THE

STATUS

MOTOR
BUSY?

NO

" OUTPUT
THE
LEADING
PAD

OUTPUT
THE
DATA ID

_

ZERO THE
CRC

SET THE LOOP
COUNT FROM
THE RECORD
LENGTH + 1

S
CASSETTE

— «m =] TAPE WRITE PAGE 5
RECORD

ROUTINE

OUTPUT

DECREMENT
THE LOOP
COUNT

SET THE BYTE
FROM MEMORY

INCREMENT
THE BUFFER
POINTER

L1

OUTPUT
THE CRC

.

OUTPUT
THE
TRAILING
PAD

SET THE
CURRENT BYTE
FROM THE

RECORD LEN.

PAGE 6

pr—
f———
WRITE PAD
G- — i - {5
ROUTINE
I
——
SET THE DATA SET THE DATA
REGISTER TO BYTE TO ZERO
00000001
pee—
WRITE DATA
CTuB = = = syrE ROUTINE
READ A BYTE ROUT
BIT INTO I
THE DATA
REGISTER

OUTPUT THEY
1ST DATA

BIT
P————

PUT A "STOP"

BIT IN THE
DATA BYTE

READ DATA
== a1 rovrmve

OUTPUT A
DATA BIT

1ES

MORE BITS?
READ IN

READ CLK
LOW?_

— e
WRITE DATA
'WD -——
¢ BIT ROUTINE
READ IN
THE READ
STATUS IN THE
STATUS
XOR THE DATA
BIT INTO THE
SHIFT THE HIGH BIT OF
NEW BIT THE CRC ¥
AT P - WRT BSY
DATA REG. L oW
YES
SHIFT THE
CRC LEFT bY
1
SHIFT THE
DATA BYTE
LEFT BY 1
NO
OUTPUT
b CURRENT
EXCLUSIVE OR
THE CRC
POLYNOMIAL . 7
INTO THE CRC
EPDATE THE
RC
RETURN

‘ RETURN ’

000016
000001

000020
000010
000004
000002
000001

000010
000004
000002
000001

000000
000020

100005
104657
000000

037400

037400
037403

037406
037407
037410

037411
037413
037415
037417
037422
037425
037426
037427
037432

037435
037437
037440
037442
037443
037444
037445
037446
037447
037450
037453
037454
037456
037457
037460
037461
037463
037464
037467
037472
037473
037474
037475
037500

104 035 077
104 213 077

250
135
007

145

257

043
133

17

0717
077

077
000

077
077

o717

SOURCE STATEMENT

.
. TCH STANDARD CASSETTE TAPE ROM FOR THE 8008
. —
[]
. PROGRAM BY RICHARD M. SMITH
.
. 1/0 DEVICE ADDRESSES
CTCTL EQU 0168 CASSETTE TAPE CONTROL REGISTER
CTSTS EQU 001B CASSETTE TAPE STATUS REGISTER
. CONTROL REGISTER BITS
CTUS EQU 020B UNIT SELECT
CTMIC EQU 010B MOTOR CONTROL
CTWRM EQU 00UB WRITE MODE
CTWRE EQU 0028 WRITE ENABLE
CTWRD EQU 001B WRITE DATA
. STATUS REGISTER BITS
CTMTB EQU 010B MOTOR OPERATION BUSY
CTWRB EQU 00UB WRITE BUSY
CTRDC EQU 0028 READ CLOCK
CTRDD EQU 001B READ DATA
. UNIT NUMBERS
CTUNO EQU 000B UNIT 0
CTUN1 EQU CTUS UNIT 1
. MISCELLANEOUS EQUATES
CTCRC EQU 1000058 CRC POLYNOMIAL (CRC 16)
CTDID EQU 1046578 DATA ID
CTLDA EQU 0000008 LOAD ADDRESS FOR IPL
. ORIGIN SET
ORG 0374008 ORG AT THE LAST PAGE OF MEMORY.
. JUMP VECTOR
JMP CTRR READ RECORD ROUTINE
JMP CTWR WRITE RECORD ROUTINE
. CASSETTE TAPE CONTROL ROUTINE
CTCN XRA RESET THE CASSETTE TAPE INTERFACE.
UT CTCTL
RET RETURN.,
. CASSETTE TAPE IPL ROUTINE
CTIPL LHI H(CTLDA) SET THE LOAD ADDRESS IN HL.
LLI L(CTLDA)
CTIP1 LAI CTUNO READ A RECORD FROM CASSETTE TAPE
CAL CTRR UNIT 0.
JFL * LOOP FOREVER IF AN I/0 ERROR.
LAB LOOP IF THE RECORD IS NOT AN END OF
ORA FILE RECORD.
JFZ CTIPY
JMP CTLDA BRANCH TO THE LOADED PROGRAM.
. CASSETTE TAPE READ RECORD ROUTINE
CTRR ORI CTMTC TURN ON THE MOTOR ON THE SPECIFIED
UT CTCTL 1T,
LBI 0 ZERO THE COMPARE REGISTER IN BC.
LCB
CTRR1 LAC READ THE NEXT BIT INTO THE COMPARE
ADA REGISTER
LAB
RAL
LBA
CAL CTRD
LAB LOOP IF NOT THE DATA ID. (ALSO
XRI H(CTDID) 2ERO THE CRC IN DE IF THE DATA
LDA ®.)
LEA
LAC
XRI L(CTDID)
ORD
JFZ CTRR1
CAL CTRB READ IN THE RECORD LENGTH AND SAVE
LBC IT IN B,
LAB LOAD IT INTO A AND BRANCH IF IT IS
ORA ZERO,
JTZ CTRR3
CTRR2 LMA SAVE THE RECORD LENGTH IN MEMORY.

037501
037504
037505
037506
037507
037512
037513
037514
037517
037520
037523

037526
037527
037530
037531
037532

037533
037535
037540
037541
037542

037545
037546
037550
037553
037554
037556
037561
037562
037563
037564
037565
037566

037567
037571
037572
037573
037574
037575
037576
037577
037600
037601
037602
037603
037605
037606
037607
037611
037612

037613
037614
037615
037616
037620
037623
037624
037626
037627
037630
037632
037635
037640
037643
037646
037651
037653
037656
037660
037663
037665
037666
037667
037670
037673
037674
037675
037700
037701
037704
037705
037710

250
135

264
007

026
106
302
260
120

100

133
133

001
45

135

002
145

002
153

010
215

010
227
332
332
332
332
211
334
257
334
000

301

301
33
213

077

077
077

077

077

077

077

077

077
077
or7

CTRR3

CTMOF

CTRB
CTRB1

CTRD

CTRD1

CTWR

CTWR1

CTWR2

CTWR3

CTWRY

CAL CTRB
LAM

LMC
INL

JFZ %44

INH

Ll
CAL
CAL

DCB
JFZ
BA

CTRR2

CTRB
CTRB

MOTOR OFF

XRA
wT
LAD
ORE
RET

CTCTL

READ BYTE

LCI
CAL
LAC
ORA
JFS

001B
CTRD

CTRB1

READ DATA

INP
NDI
JFZ
INP
NDI
J1Z
INP
RAR
LAC
RAL
Lca
RRC

LEA
RET

CTSTS
CTRDC
CTRD

CTSTS
CTRDC
CTRD1
CTSTS

PAGE 7
READ IN A DATA BYTE AND SWAP IT
WITH THE RECORD LENGTH IN
MEMORY .
BUMP UP HL BY 1,
DECREMENT B AND LOOP IF IT IS NOT
ZERO.

SAVE THE RECORD LENGTH IN B.
READ IN THE CRC.

ROUTINE
RESET THE CASSETTE TAPE INTERFACE,
SET THE RETURN CODE FROM THE CRC.

RETURN.
ROUTINE

SET C TO 001B.
READ IN T DATA BITS.

BIT ROUTINE

WAIT FOR THE READ CLOCK TO GO HIGH.
WAIT FOR THE READ CLOCK TO GO LOW.

ISOLATE THE DATA BIT IN THE CARRY.

ROTATE THE BIT INTO C.

PUT THE BIT IN THE HIGH BIT OF A.

CALCULATION ROUTINE

2008

H(CTCRC)

EXCLUSIVE OR THE DATA BIT INTO THE
HIGH ORDER BIT OF THE CRC.

SHIFT THE CRC LEFT BY 1,

RETURN IF NO CARRY OUT.
EXCLUSIVE OR THE CRC POLYNOMIAL INTO
THE CRC.

L(CTCRC)

RETURN,

WRITE RECORD ROUTINE

ouT
LCA
INP
NDI
JFZ
LAC

CTCTL OUTPUT THE UNIT SELECT AND SAVE IT
IN C.
CTSTS WAIT FOR THE MOTOR TO STOP.
CTMTB
CTWR1
TURN ON THE MOTOR.
CTMTC
CTCTL
CTSTS WAIT FOR THE MOTOR TO COME UP TO
CTMTB SPEED,
CTWR2
CTWP OUTPUT THE 4 BYTES OF LEADING PAD.
CTWP
CTWP
CTWP
H(CTDID) OUTPUT THE DATA ID.
CTWB
L(CTDID)
CTWB
0 ZERO THE CRC IN DE.
LOAD THE RECORD LENGTH INTO.C, BUMP
IT UP BY 1 IN B, AND BRANCH INTO
CTWRY4 THE WRITE .
LOAD THE NEXT DATA BYTE INTO C,
"ol
CTWB OUTPUT THE CURRENT BYTE,
DECREMENT B AND LOOP IF IT IS NOT
CTWR3 ZERO.
OUTPUT THE CRC.

PAGE 8

037711
037712
037715
037716
037721
037724
037727

037732

037734
037737
037740
037743
037744
037745
037750

000200
000200

000020
000010
000004
000002
000001

000010
000004
000002
000001

000000

. 000020

000200
000005
000211

. 000257

000000

' 000400

177400

177400
177403
177406

177411
177414
177417
177420
177422
177425
177430
177431

177432

177435

323
106

106
106
106
104

026

106

106
302

110
007

303
303

on1
061
345
076
315
302
170
267
302
3

o42
135
036

000
000

334

334
332
332
126

317
377
377

000
001

000
o042
025

377
3717

377

077

077

077

077
077
077
o077 .

CTw2

CTWB

CTWB1

077

CTWRM
CTWRE
CTWRD

CTMTB
CTWRB
CTRDC
CTRDD

CTUNO
CTUN1

CTHCRC
CTLCRC
CTHDID
CTLDID
CTLDA
CTSTE

CTIPL:

CTIP1:

LCD .
CAL CTWB
éﬁg cTvB 037751 103 CTWD
CAL CTWP OUTPUT THE TRAILING PAD OF ZEROS. 037752 04k 004
ot 037754 110 351 077
037757 302
JMP CTMOF GO TURN OFF THE MOTOR. aTTer X2
037761 320
037762 103
WRITE ZERO PAD BYTE ROUTINE 03r1es 033
037764 002
LcL 0 ZERO C. 037765 04k 021
037767 064 016
037771 135
WRITE BYTE ROUTINE o3 o2
*
CAL CTWD OUTPUT THE 1ST DATA BIT.
NG PUT IN A "STOP" BIT IN C. 037773 104 167 077
CAL CTWD OUTPUT BITS UNTIL A STOP BIT IS THE (...
LAC ONLY BIT LEFT. 3777
ADA
JFZ CTWB1
RET RETURN.
TCH STANDARD CASSETTE TAPE ROM FOR THE 8080 ;
- 177436 257 CTCN:
177437 323 200
PROGRAM BY RICHARD M. SMITH 33
1/0 DEVICE ADDRESSES ;
EQU 200Q ; CASSETTE TAPE CONTROL REGISTER 1;;::5 ggg gsg CTRR:
EQU 200Q ; CASSETTE TAPE STATUS REGISTER j77..¢ 323 200
CONTROL REGISTER BITS 177451 171 CTRR1:
177452 207
EQU 020Q ; UNIT SELECT 177353 170
EQU 010Q ; MOTOR CONTROL ‘77u5 027
EQU 004Q ; WRITE MODE 177455 107
EQU 002Q ; WRITE ENABLE 1;;:2? ?;g 255317
EQU 001 ;
QU 001Q ; WRITE DATA Traes 28 219
177464 127
177465 137
STATUS REGISTER BITS e 137
EQU 010Q ; MOTOR BUSY 1TTaer 35 257
EQU 004Q ; WRITE BUSY 177471 262
Bam o mom e Ram
EQU 001Q ; READ DATA BAMEREI
177501 . 305
177502 171
UNIT NUMBERS ML
177504 312 120 377
U 00 ; UNIT 0
P onus PO 177507 315 243 377 CTRR2:
’ 177512 167
177513 043
177514 005
MISCELLANEOUS EQUATES
A q 177515 302 Ok2 377
EQU 200Q ; CRC POLYNOMIAL (CRC 16) 177520 315 243 377 CTRR3:
EQU 005Q : 177523 315 243 377
EQU 211Q ; DATA ID 177526 301
EQU 257Q ;
EQU 000000Q ; INITIAL LOAD ADDRESS FOR IPL
EQU 000400Q ; END OF STACK FOR IPL .
;
ORIGIN SET 177527 257 CTMOF:
177530 323 200
ORG 177400Q ; SET THE ORIGIN TO THE LAST 177532 172
; PAGE OF MEMORY. 177533 263
177534 311
JUMP VECTOR .
;
JMP CTRR ; READ RECORD
JMP CTWR ; WRITE RECORD :;;ggg ;;; 200 CTWR:
JMP CTCN ; CONTROL ROUTINE HAE A R J—
177542 346 010
177544 302 140 377
A
CASSETTE TAPE IPL ROUTINE HAEAEE A
LXI HL,CTLDA ; INITIALIZE THE LOAD ADDRESS 177550 366 010
LXI SP,CTSTE ; AND THE STACK POINTER. 177552 323 200 .
PUSH HL ; SAVE THE LOAD ADDRESS. ‘7755: 322 200 CTWR2:
MVI A,CTUNO ; READ A RECORD FROM CASSETTE 177556 346 010
CALL CTRR i TAPE UNIT O. 177560 302 154 377
Nz $; LOOP FOREVER IF 1/0 ERROR. 177563 315 323 377
MOV A,B ; LOOP IF THE RECORD IS NOT AN 177566 315 323 377
ORA A ; END OF FILE RECORD. 177571 016 211
R % o
RET ; BRAN D P .
 BRANCH TO THE LOADED PROGRAN. |TTT0 918 257
177603 021 000 000

WRITE DATA BIT ROUTINE

INP
NDI
JFZ
LAC
ADA
LCA
INP
RAR
RLC
NDI
ORI
ouT
RRC

JMP

END

CASSETTE TAPE CONTROL

CTSTS
CTWRB
CTWD

CTSTS

CTUS+CTWRD

WAIT FOR THE WRITE BUSY TO GO LOW.

SHIFT THE BYTE IN C LEFT BY 1.

ISOLATE THE UNIT SELECT AND CURRENT
DATA BIT IN A.

CTWRM+CTWRE+CTMTC OUTPUT THE BIT.

CTCTL

CTCC

XRA A
OUT CTCTL
RET

ISOLATE THE DATA BIT IN THE HIGH BI

GO UPDATE THE CRC.

ROUTINE

3 CLEAR THE CASSETTE TAPE
H INTERFACE.
; RETURN.

CASSETTE TAPE READ RECORD ROUTINE

ORI
ouT
LXI

MOV

CTMTC
CTCTL
BC.0

A.C

A

AB
B,A
CTRD
AB
CTHDID
D,A
E.A

A,C
CTLDID

ORA D

CTRR1

CALL CTRB

MoV

B,C

PUSH B

MOV

AC

ORA A

Jz

CTRR3

CALL CTRB
MOV M,A
INX HL
DCR B

JNZ CTRR2
CALL CTRB
CALL CTRB
POP BC

TURN THE SPECIFIED UNIT'S
MOTOR ON.

ZERO THE COMPARE REGISTER IA
BC.

READ THE NEXT DATA BIT INTO
THE COMPARE REGISTER.

LOOP IF THE COMPARE REGISTER
DOES NOT EQUAL THE DATA
ID. (ALSO ZERO THE CRC IN
IN DE IF THE DATA ID.)

READ IN THE RECORD LENGTH AND
SAVE IT IN B AND ON THE
STACK.

BRANCH IF IT IS ZERO.

READ AND STORE THE NEXT DATA
YTE.

DECREMENT B AND LOOP IF IT
IS NOT ZERO.
READ IN THE 2 CRC BYTES.

POP THE RECORD LENGTH INTO
B.

MOTOR OFF ROUTINE

XRA A

ouT
MOV

CTCTL
A,D

ORA E
RET

CASSETTE TAPE WRITE

MOV
ouT

ANT

C,A
CTCTL
CTSTS
CTMTB
CTWR1
A,C
CTMTC
CTCTL
CTSTS
CIMTB
CTWR2
CTWP2
CTWP2
C,CTHDID
CTWB
C,CTLDID
CTWB
DE,0

RESET THE CASSETTE TAPE
INTERFACE.

SET THE RETURN CODE FROM THE
FINAL CRC.

RETURN.

RECORD ROUTINE

OUTPUT THE UNIT SELECT AND
SAVE IT IN C.
WAIT FOR THE MOTOR TO STOP.

TURN ON THE MOTOR.

WAIT FOR THE MOTOR TO COME
UP TO SPEED.

OUTPUT THE 4 BYTES OF

LEADING PAD.
OUTPUT THE DATA ID.

ZERO THE CRC IN DE.

177606
177607
177610

177613
177614
177615
177620
177621
177624
177625
177626
177631
177632
177635
177640

177643
177645
177650
177651
177652

177655
177657
177661
177664
177666
177670
177673
177675
177676
177677
177700
177701

177702
177704
177705
177706
177707
177710
17771
177712
177713
177715
177716
177717
177721
177722

177723
177726

177730
177733
177734
177737
177740
177741
177744

177745
177747
177751
177754
177755
177756
177757
177761
177762
177763
177765
177767
177771
177772

110
ool
303

116
043
315
005
302
103
112
315
110
315
315
303

016
315
171
267
362

333
346
302
333
346
312
333

171
217
"7
017

346
252
127
353
051
353
320
172
356
127
173
356
137
3

315
016

315
014
315
17
207
302
3n

333
346
302
17
207
"7
333
037
007
346
366
323
017
303

215 3717

330 377
213 377

330 377

330 377
323 377
127 317

001
255 377

200
002
255 377
200
002
264 377
200

200

326 377
000

345 377
345 377

334 377

200
004
345 377

200

021
016
200

302 377

CTWR3:

CTWRY:

CTRB:
CTRB1:

CTCC:

CTWP2:
CTWP:

H
CTWB:

CTWB1:

READ

IN
ANI
JINZ

Jz

RAR
MOV
ADC
MOV
RRC

WRITE ZERO PAD BYTE

CALL
MVI

WRITE BYTE ROUTINE

CALL
INR
CALL
MoV
ADD
JINZ
RET

c,B
B
CTWR4

C,M
HL
CTWB
B
CTWR3
B.E
c,D
CTWB
c,B
CTWB
CTWP2
CTMOF

BYTE ROUTINE

C,001Q
CTRD
A,C

A
CTRB1

DATA BIT ROUTINE

CTSTS
CTRDC
CTRD

CTSTS
CTRDC
CTRD1
CTSTS

c

A,
A
C,A

3
H
i
H
H
i
H
H
H
i
H
H
H
i

LOAD THE RECORD LENGTH INTO
C, BUMP IT UP BY 1 IN B,
AND BRANCH INTO THE WRITE
LOOP.

LOAD THE NEXT DATA BYTE INTO
C

OUTPUT THE CURRENT BYTE.

DECREMENT B AND LOOP IF IT
IS NOT ZERO.

OUTPUT THE CRC.

OUTPUT THE TRAILING PAD.
GO TURN OFF THE MOTOR.

SET C TO 001Q.
READ IN 7 DATA BITS.

WAIT FOR THE READ CLOCK TO
GO HIGH.

; WAIT FOR THE READ CLOCK TO

GO LOW.

ISOLATE THE DATA BIT IN THE
CARRY.
SHIFT THE BIT INTO C.

PUT THE NEW BIT IN THE HIGH
BIT OF A FOR THE CRC
UPDATE.

CALCULATION ROUTINE

200Q
D
D,A

HL

A,D
CTHCRC
D,A
AE
CTLCRC
E,A

CTWP
c,0

CTWD
c
CTWD
A,C

A
CTWB1

i
H
H
H
H
H
H
i
H
H
H
H
H
3

EXCLUSIVE OR THE DATA BIT
INTO THE HIGH ORDER BIT.
OF THE CRC.

; SHIFT THE CRC LEFT BY 1.

s RETUEN IF NO CARRY OUT.
3 EXCLUSIVE OR THE CRC

POLYNOMIAL INTO THE CRC.

;. RETURN.

ROUTINE

i

OUTPUT THE 1ST PAD BYTE.

; ZERO C.

OUTPUT THE 1ST DATA BIT.

PUT A "STOP" BIT IN C.

OUTPUT BITS UNTIL THE STOP
BIT IS THE ONLY BIT
LEFT.

RETURN.

WRITE DATA BIT ROUTINE

CTSTS
CTWRB
CTWD
AC

A

C,A
CTSTS

CTUS+CTWRD

WAIT FOR THE WRITE BUSY TO
GO LOW.

SHIFT THE BYTE IN C LEFT BY
1.

ISOLATE THE UNIT SELECT AND

CTWRM+CTWRE+CTMTC ; OUTPUT THE BIT.

CTCTL

CTCC

H
H
i
i

3 POSITION THE CURRENT DATA

BIT IN THE HIGH BIT OF A
AND GO UPDATE THE CRC.

ESS CORPORATION
Box 5314
Charlotte, NC 28205

Now available from ESS Corp., the National
IMP 16C/200 microprocessor completely as-
sembled and tested ($780.00). Options avail-
able are: Parallel Interface Card with capacity
of 64 (4x16) Inputs and 64 (4x16) latched and
buffered outputs ($170.00) kit, Memory Ex-
pansion Card (2Kx16) 2102-2 static RAMs
($175.00) kit, Prom Expansion Card with capa-
city of (2Kx16) 8 MM5204 Proms ($95.00) kit.

Software included with purchase of IMP
16C/200: Resident Assembler, Text Editor,
Debug, and Front Panel Monitor.

Complete system with 1 IMP16C/200 CPU, 2
Memory Expansion Cards, 1 Serial Interface
Card (20 ma. loop or RS 232), 1 card cage, 2
PROMS programmed with Monitor. All of the
above with software, wired, tested, and ready to
operate with your teletype, T.V., typewriter, or
other serial 1/0 device ($1590.00).

ALSO AVAILABLE IN NOV. 1975, THE DEC
LSI-11. Price for CPU card with 4K words of
memory completely assembled and tested with
assembler, editor debug, binary loader and
bootstrap loader is $849.00. Coming soon a
complete system with the LSI-11 to run Basic
and Fortran IV.

PLACE YOUR ORDER NOW FOR EARLY DELI-
VERY.

STILL AVAILABLE: National 2102-2 (650 ns.)
static rams $3.00 ea.

TERMS: We accept COD'’s with 25% deposit or
Bank Americard, Mastercharge, money orders,
or bank checks. Please NO cash or personal
checks.

FOR ADDITIONAL INFORMATION call or write:

JOHN CLARK

ESS CORPORATION
BOX 5314
CHARLOTTE, NC 28205

PHONE: 704/332-3313

PAGE 10

COMPUTER RING-PONG by Jim Parker

One of the more entertaining ways to use a graphics
display is to play ping-pong on it. This program sim-
ulates a Ping-Pong game in a way very similar to the
television version that has recently become popular. The
. game allows. two players to move “"paddles" up and down so
as to "hit" a ball back and forth across the screen. The
first serve is begun by pushing a button. A miss scores a
point for the other player and automatically causes
another serve to the player who missed last. The first
player to score eleven points wins the game. The first
game always begins with .a serve to the player on the
right. After that, the following games begin with a serve
to the side that lost the last game.

The program runs on an 8008-1 system with at least 3
pages of RAM and Hal Chamberlin’s graphics display and pot
controls. The plans for these I1/0 devices were published
in Volume I, issue numbers 1, 2, 3, and 4 of TCH. As an
option, a speaker can be used to provide a pop sound when
the ball and paddle collide. Readers with an 8080 CPU
should also be able to use this program although it may
need to be slowed down a little. More will be mentioned
on this later.

Motion of the ball is done by showing successive
"frames" of the ball shifted slightly over, much like a
movie. An interesting feature of this game is that the
ball can travel with 32 different velocities, 16 towards
the 1left and 16 towards the right. A basic knowledge of
vectors is required to understand 'how this is done.
Simply put, the velocity (which specifies both speed and
direction) can be broken up into X and Y (horizontal and
vertical) components. The square root of (X**2+Y**2)
determines the speed while the arc tangent of (Y/X)
determines the direction angle with respect to the hor-
izontal axis. For example, if the ball was displaced 1
unit up and one unit to the right every frame, it would
appear to move at a speed of V2 units per frame at an
angle of 450. A problem arises when you try to keep the
speed below 2 units per frame (as was done in this
program) and still provide a large variety of direction
angles. If you use only integers, the possible (X,Y)
component velocity combinations are soon exhausted. For
example, if you displace the ball 1 unit right and 2 units
up every frame, the speed will be V5 or greater than 2
units per frame. To solve this problem, double precision
(16 bit) arithmetic was used. The most significant 8 bits
specify the ball’s X or Y position on the display while
the least significant 8 bits act as the numerator of a
fraction with the implied denominator of 256. This two
byte combination can be treated as if the whole thina was
multiplied by 256 and converted to a 16 bit integer with
an implied division by 256 to restore it back to normal.
Thus the DBLADD routine can perform a simple 16 bit
integer addition to compute the next ball position. Note
that multiplication or division by 256 is accomplished by
shifting the 16 bit integer 1left or right 8 bits with
respect to the binary point. Thus the 16 bit ball
position is displayed by regarding only the most signif-
icant byte. This has the same effect as dividing the 16
bit integer by 256 (shifting it right with respect to the
binary point) and ignoring any fractional part of the
quotient.

The use of fractions allow a much greater range of
velocity (X,Y) components between 0 and 2 so that a wide
range of angles are possible all with a speed of 2 units
per frame. As mentioned before, the ball’s next position
is computed by adding the 16 bit X position to the 16 bit
X displacement, the 16 bit Y position to the 16 bit Y
displacement, and regarding only the most significant
bytes of these two sums. Due to the fact that the
fractional part of the ball’s position is not displayed,
there is a slightly ragged appearance in the ball’s path
across the screen although it is certainly not very
noticable. To avoid complex subroutines to compute square
roots and arc tangents, a simple velocity table is
provided with 16 different velocities. Fifteen of these
move the ball at a speed of 2 units per frame and one
moves the ball horizontally at 1 unit per frame. All of
the velocities move the ball towards the right. To move
the ball left, the X velocity component is negated. Note
that two’s complement arithmetic is used to handle neg-
ative numbers. I 1like to negate numbers simply by
subtracting them from zero which is represented the same
as 2**16 aor 65536 for 16 bit numbers. Thus negative 100
would be represented as 65536-100=65436. To prove that
this works, try adding -100 to +300 using 16 bit unsigned
integers. Well, 65436+300= 65736 but that number requires
17 bits to represent. Since the most significant bit will
be lost and that bit represents 2**16=65536, we must
subtract -it from the above addition. Thus 65736-65536=200
which is the correct result. If you are familiar with
modular arithmetic, you can think of this as MOD 2**16
arithmetic. There are other ways to deal with two’s
complement arithmetic but I prefer the above method.

In the velocity table, all values were computed with
the help of a pocket calculator. They are listed in the
order of least significant X, most significnat X, least
significant Y, and mdst signf{ficant Y. Multiply the most
significant value by 256 and add that to the least
significant value to get the numerator of a fraction in

the range of 0/256 to 65535/256. If the number is greater
than or equal to 2**15=32768, its most significant bit
(called the sign bit) will be ONE and the number will be
negative. Convert these to a positive number by subtract-
ing them from 65536 as mentioned before. You can then
confirm for yourself the ball velocities by dividing the
numbers by 256 and plugging them into the square root and
arc tangent formulas given previously.

When the ball is served or when the ball is hit, a
random number generator indexes the ANGLE table so as to
project the ball in an unpredictable manner. Bouncing the
ball off the top or bottom, however, is simulated by
simply negating the ball’s Y velocity component. Basic
physics predicts this result assuming there is no energy
lost in the bounce.

The power of flow charting is well illustrated here
for without the appending chart, it would be very diffi-
cult to explain or even write this program. By glancing
over it, you should get a general idea of how the program
runs. Please refer to the Volume 1, Number 4 issue of TCH
for a detailed description of the pot controls and switch
device used. Before switch 1 is pushed, the program
merely draws the score from the last game, reads two pot
controls and positions the two paddles accordingly, and
draws the board (a square that defines the outer bound-
ary). All this is done by calling the DRAW subroutine.
If you are unfamiliar with how the CHAR, RVCD, and GRAPH
subroutines work, you should refer to the example software
programs listed in the first four issues of TCH. Basic-
ally the DRAW subroutine does its job by filling in the
correct parameters for the other three subroutines just
mentioned.

When switch 1 is pushed, the program begins a new
game. It resets the score, picks a starting position for
the serve somewhere near the middle of the board, and
picks a serve velocity at random from the ANGLE table.
The program is then ready to enter the major loop headed
by the name NXPOS. The loop is passed through everytime
the next position of the ball is displayed and examined.
There are four tests made on the ball’s position. :Due to
the wrap-around effect. of the board the test for end zone
can be reduced to one test. Similarly, so can the test
fg: the ball touching the top or botton. It works like
this:

There are two Y coordinate positions at the top and
two at the bottom that indicate when the ball has reached
the edge. Thus if the ball’s most significant Y position
is 126, 127, 128 (=-128), or 129 (=-127), then the program
needs to change the ball’s Y direction. This is tested by
subtracting ‘126 from the ball’s Y position. If the ball
is at the edge,.the resulting difference will be 0,1,2, or
3. A CPI 4 is performed on the result. This sets the
flag flip-flop the same way as if 4 had been subtracted
from the number. Only if the number is 0,1,2, or 3 will
the carry flag (or the borrow flag in this case) be set by
subtracting 4. A similar technique is used for testing
the other =zones. Some readers may find this technique
useful in other programs for testing if a number is in a
certain range. Note that the X position of the ball is
not reloaded after every test. This can be done if you
keep track of the amount you subtracted from the number
for the previous test. Thus 104 is subtracted first to
see if the ball’s X position is 104 and then 44 is
subtracted from that to see if the X position is 148
(=-108) or 149 (=-107).

The result of the above tests determine what the
program does next. If the ball is not touching any
special boundaries then the program jumps back to NXPOS
and displays the next position of the ball. As long as
the ball doesn’t reach the paddle zones or end zone, the
program will continue to loop through NXPOS, showing the
ball shifted over slightly each time. This causes the
ball to appear in motion. When the ball reaches a paddle
zone, the program jumps to a routine that tests the
position of the corresponding paddle. The paddle is 16
units high so a test is made to see if the ball’s ¥
position minus the Y position of the bottom of the paddle
is less than 16. If it is, the direction of the ball is
changed and a new ball velocity is picked at random from
the ANGLE table. The ball must also be cleared from the
paddle zone or an interresting bug will occur. If the
ball travels into the zone faster than it leaves, it will
not be out of the zone on the next time around the loop.
The program would the change the direction of the ball
again. The ball may bounce back and forth in this zone
many times until it finally escaped. To prevent this from
happening, the program actually relocates the ball just
outside of the paddle zone when it is hit. Also a speaker
is popped. This is done by executing an input instruction
to the keyboard (which has the speaker for feedback while
typing) on TCH’s demo system. If the ball misses the
paddle then the program allows the ball to keep traveling
in the same direction.

When someone misses the ball, the ball will reach the
end zone. This causes the program to test the ball’s
direction to see who missed, and then to increment the
score accordingly. Score keeping is handled somewhat
unconventionally in this program in order to .save on
memory and program complexity. Each character can be

LOCN
000000

000006
000010
000011
000012
000013
000014
000015

000000
000003
000004
000005
000010
000013
000014
000016
000017

000021
000024
000026
000030
000032
000033
000035
000037
000042
000044
000045
000046
000050
000051
000052
000054
000057
000062
000064
000066
000071
000072
000073
000076
000100
000101
000103
000105
000107
000112
000114
000115
000117
000121
000124
000126
000130
000133
000135
000137
000142

000145
000147
000150
000151
000154

drawn using the minor deflection
less of data. Because of this,
acters begin ot memory locations separated by exactly 16
bytes per character. Since the table of characters for
the score is arranged in ascending order, the score
counter needs only to keep track of the low address of the
character and have that value incremented by 16 every time
the player scores another point. Note that ten and eleven
are treated as if they were "single characters. The
program knows when the game has ended by testing for when
the score counter addresses the character eleven. If the
game is not over, the program will delay a few seconds and
then jump back to the part of the program that initiates a
serve. If the game is over, the program will jump back to
the beginning, displaying the final score and waiting for
switch 1 to be pushed to begin another game.

Readers with an 8080 machine and an assembler should
have 1little problem using this program. Since the 8008
instruction set is a subset of the 8080 instruction set,
you should be able to translate every instruction on a one
to one basis. The real problem in running the program is
slowing it down. If you are driving the graphics display
as published in the first three issues of TCH, your main
concern should be in slowing down the subroutines that
draw on the display since most of the execution time is
spent driving the display. This can be done by adding
inefficient NOOP’s (such as an even number of XTHL’s) in

system with 16 bytes or
the data for the char-

should

also be used in the D/A

PAGE 11

routines for the pot

gontroli ‘to avoid sampling the comparators before they
ave

faster

If you have a slower machine
of an 8008-1,
subroutines,

size
choose the last
width of the paddle zones or the ball may penetrate right

through the paddles.

thickness
penetratable
challenge

settled.

graphics
delay loops, reduce the
velocity table, or make the paddles wider.

the
in

suggestion, you

If you have both a fast machine and a
display,

then you can either introduce
size of the entries in the ball

such as an 8008 instead

yo: can improve the efficency of the display
make
of the entries

paddles smaller, or increase the
the ball velocity table. If you
must also increase the

As usual, there are a large number of variations that
can be

more

hit
be

tried.

A

simple
of various boundaries so as
508 of the
even the most skilled players.
realistic game,
could be determined by how
position prior to being hit.
a program that would

loop-the-1loop.
be developed.

A game for 1, 3,
In the case of

variation is to reduce: the
to make them
guaranteed to

To make even a

time. This is

the velocity of the ball after being

quickly the paddle changed
Even fancier versions would
occasionally make the .ball
or 4 players could also
a single player, provide a

goal on the opposing side so that the ‘player could hit the

ball

a whole series of simulation game programs.
encouraged to

in.

graphics
published by TCH.

PING-PONG PROGRAM LISTING

the critical loops. If the speed of the 8080 can match
the speed of Hal Chamberlin’s display, then the program
should be slow enough for two human players. Caution
CODE SOURCE STATEMENT
ORG O
GINP EQU 6
XMOV EQU 10B
YMOV EQU 11B
XSTOR EQU 12B
YDRAW EQU 13B
MINXY EQU 14B
MINSZ EQU 15B
106 032 001 PING CAL DRAW DRAW SCORE, BOARD AND PADDLES
15 INP GINP
022 RAL
100 000 000 JFC PING WAIT FOR SWITCH 1 TO BE PUSHED .
056 002 066 SHL SCORE
025
076 000 LMI O
060 INL
076 000 LMI 0 RESET SCORE TO 0
106 361 000 SERVE CAL RAND GET RANDOM BYTE IN ACC
osy 177 NDI 1778
024 100 SUI 64 IN RANGE OF -64 TO 63
066 052 LLI L(BALPOS+3) PT TO MOST SIG. Y BALL POS
370 LMA RANDOM VERTICAL SERVE POS. NEAR MIDDLE
066 050 LLI L(BALPOS+1) PT TO MOST SIG. X BALL POS.
076 000 ILMI 0 HORIZONTAL SERVE POS. AT MIDDLE
106 270 000 CAL RDISP PICK BALL VELOCITY FROM TABLE
066 050 NXPOS LLI L(BALPOS+1)
307 LAM
121 OUT XMOV
066 052 LLI L(BALP0S+3)
307 LAM
123 OUT YMOV POSITION BALL’S X AND Y COORD.
066 066 LLI L(BALL)
106 127 001 CAL CHAR DRAW BALL
106 032 001 CAL DRAW DRAW SCORE,BOARD, AND PADDLES
036 027 LDI L(XDISP) D= ADDRESS OF XDISP
046 ou7 LEI L(BALPOS) E= ADDRESS OF BALPOS
106 333 000 CAL DBLADD COMPUTE NEW BALL X COORD
030 IND D= ADDRESS OF YDISP
o40 INE E= ADDRESS OF BALPOS Y COORD
106 333 000 CAL DBLADD COMPUTE NEW .BALL Y COORD
066 052 LLI L(BALPOS+3)
307 LAM GET BALL Y COORD
024 176 SUI 126
074 004 CPI 4 CHECK IF TOUCHES TOP OR BOTTOM
066 031 LLI L(YDISP)
142 350 000 CTC NEGATE CHANGE Y DIRECTION IF SO
066 050 LLI L(BALPOS+1)
307 LAM LOAD BALL X POSITION
024 150 SUI 104
074 002 CPI 2 SEE IF IT TOUCHES RIGHT PADDLE BOUNDARY
140 212 000 JTC RPAD CHECK PADDLE POSITION IF SO
024 054 SUI u4
074 002 CPI 2 SEE IF IT TOUCHES LEFT PADDLE ZONE
140 217 000 JTC LPAD CHECK PADDLE POSITION IF SO
004 026 ADI 22
074 o004 CPI 4 SEE IF BALL REACHES END ZONE
140 145 000 JTC OFF JUMP IF SO
104 042 000 JMP NXPOS COMPUTE NEXT BALL POSITION
066 033 OFF LLI L(DIRECT)
307 LAM GET BALL DIRECTION
260 ORA SET SIGN BIT
160 161 000 JTS OFFL RECORD SCORE ACCORDINGLY
066 025 LLI L(SCORE)

000156
000161
000163
000164
000166
000167
000171
000174
000176
000177
000200
000201
000204
000207

000212
000214

000217

000221
000224
000227
000230

000231
000233
000236
000237
000241
000242
000244
000245
000250
000252
000253
000254
000256
000260
000263
000265

000270
000273
000275
000277
000300
000301
000302
000303
000304
000305
000306
000307
000310
000312
000313
000314
000315
000316
000317
000320
000321
000323
000324
000326
000327
000332

104
066
307
004
370
oT4
150
066
317
011
3mn
150
106
104

006
104

006

163
026

020
260

000
034

021
032
174

004
221

001

137
002

020
ou2

033

270
033

050
wr
042
226
o042

361
074
272

033
027

350

Hopefully this program will open the doorway to

display

000
OFFL
POINTS

Loop

000
001
000

001
066

000

000

000
000

000 RDISP

000

make
and

every
enjoy the demo programs that are

Hobbyists are
effort to build their own

POINTS
L(SCORE+1)
20B BUMP SCORE INDEX

260B CHECK FOR END OF GAME

PING JUMP IF SO

L(DELAY) DELAY A WHILE BEFORE NEXT SERVE

SERVE SERVE NEXT BALL AFTER DELAY
DRAW DRAW BOARD WHILE WAITING
LOOP DELAY LOOP
y SET TO READ RIGHT DIAL
HIT CHECK FOR PADDLE HIT
1 SET TO READ DIAL 1
RVCD GET DIAL VALUE
BALPOS+3
GET DISTANCE BETWEEN BALL AND BOTTOM
OF PADDLE
16 SET CARRY IF BALL TOUCHES PADDLE
NXPOS ~ LET BALL PASS IF NO CONTACT
3B POP SPEAKER
L(DIRECT)
GET BALL DIRECTION
2008
INVERT BALL DIRECTION
RDISP GET RANDOM BALL VELOCITY
L(DIRECT)
GET BALL DIRECTION
SET SIGN BIT
L(BALPOS+1) PT TO THE BALLS X POSITION
103 CLEAR FROM RIGHT PADDLE
NXPOS LOOP IF BOUNCED OFF RIGHT PADDLE
150 CLEAR FROM LEFT PADDLE
NXPOS LOOP

RANDOM BALL VELOCITY FROM TABLE

RAND
T4B
L(ANGLE)

GET RANDOM BYTE

INDEX ANGLE TABLE AT RANDOM
TRANSFER 4 BYTES FROM ANGLE TABLE
TO XDISP AND Y DISP

L(XDISP)

L(DIRECT)
GET BALL DIRECTION

L(XDISP)
SET SIGN FLAG

NEGATE NEGATE X DIRECTION IF NEEDED
RETURN

PAGE

000333
000334
000335
000336
000337
000340
000341
000342
000343
000344
000345
000346
000347

000350
000351
000352
000353
000354
000356
000357
000360

000361
000364
000365
000367
000370
000371
000372
000373
000374
000375
000376
000400
000401
000402
000403
000404
000405
000406
000407
000410
000411
000412
, 000413

000414
000415
, 000416

000417

000420
, 000423

000424
000425
000426
000430
000431

000432
000434
000435
000440
000441
000444
000446
ooouu7
000452
000454
000457
000461
000462
000465
000467
000472
0004TY
000477
000500
000502
000503
000506
000507
000512
000514
000517
000520
000522
000523
000526

12

250

007

006
133

025
106

121
106
066
106
006
121
106
066
106

106
123
006
121

47
106
006
106
123
006
121
056
127

002

370

002

024
260

127
026
024
100
127

200

066

000

066

RAND

RTOP

DRAW1

DRAW

16 BIT ADD ROUTINE

LLD
LAM
LLE
ADM

16 BIT NEGATE

XRA
SUM
LMA
INL
LAL
SBM
LMA
RET

LOAD LSB OF VALUE TO ADD
ADD BOTH LEAST SIG. BYTES TOGETHER
SAVE

LOAD MOST SIG BYTE OF VALUE TO ADD

ADD WITH CARRY

SAVE

RETURN

ROUTINE

ZERO REG A

LOAD NEGATIVE OF MEMORY
SAVE

ZERO REG A WITHOUT RESETTING CARRY
LOAD NEGATIVE OF MEMORY WITH BORROW
SAVE

RETURNS RANDOM BYTE IN REGISTER A

SHL

SHIFT+3 PT TO SHIFT BYTE 4

8 SET FOR 8 SHIFTS
LOAD SHIFT BYTE 4
MOVE BIT 28
TO POSITION 31
X OR BITS 28 & 31
MOVE NEW BIT INTO CARRY

L(SHIFT) PT TO SHIFT BYTE 1
LOAD SHIFT BYTE 1
ROTATE THRU CARRY
SAVE
LOAD SHIFT BYTE 2
ROTATE THRU CARRY
SAVE
LOAD SHIFT BYTE 3
ROTATE THRU CARRY
SAVE
LOAD SHIFT BYTE 4
ROTATE THRU CARRY
SAVE

RTOP REPEAT 8 TIMES

LOAD SCORE INDEX
INDEX SCORE CHAR. TABLE

1778

YMOV POSITION CHARACTER. AT TOP OF DISPLAY

BOARD, PADDLES, AND SCORE

3778

MINSZ ~ SET MINOR DEFLECTION SYSTEM FOR MAX RANGE

SCORE

DRAW1

260B

XMOV POSITION RLEFT SCORE

CHAR DRAW IT

L(SCORE+1)

DRAW1

64

XMOV POSITION RIGHT SCORE

CHAR DRAW IT

L(BOARD)

GRAPH DRAW OUTSIDE SQUARE

1

RVCD

YMOV POSITION LEFT PADDLE

-108

XMOV

LPADD

CHAR DRAW LEFT PADDLE

y

RVCD

YMOV POSITION RIGHT PADDLE

105

XMOV

RPADD

000527
000530
000531
000532
000533
000534

000537
000540
000542
000543
000544
000547
000550
000552
000553
000554
000555
000556
000557
000560
000561
000562
000565
000566
000567
000570
000571
000572
000573
000576
000577

000600
000601
000602
000603
00060
000605
000606
000607
000610
000611
000612
000613
000611
000615
000616
000617
000620
000621
000622
000623

001000
001000

001000
001003
001004
001007
001010

001020
001020
001023
001024
001025
001027
001031
001033
001034

001040
001040
001043
001044
001047
001052

001060
001060
001063
001064
001066
001071
001072

001100
001100
001103

104

310
006
012
011
110
310
056
365
305
256
121
300
300
115
241
150
305
256
350
306
012
360
100
305
007

317
250
131
060
307
121
060
307

123

011

060
307
300
300
125

307
127
104

o4o
w7
167
160
340

026
154
m

000

127

020

142

200

170

153

000
001
0ao

110
000

334
110

157

CHAR

001
RVCD
RVCD1

001

RVCD2

001

RVCD3

001

GRAPH

GRAPH1

SCORE
XDISP
YDISP
DIRECT
DELAY

157

360
000 BALPOS

177

111 BALL

DRAWS WITH MINOR DEFLECTION SYSTEM

MINXY

CHAR

20B

RVCD1

2008

XMov

GINP

RVCD3

RVCD2

LOAD BYTE FROM MEMORY
SET SIGN BIT

DRAW BYTE

RETURN IF LAST BYTE

BUMP MEMORY INDEX

DRAW NEXT BYTE FROM TABLE

COMPUTE BIT MASK FROM DIAL NUMBER
START WITH MASK OF 00010000
SHIFT MASK RIGHT UNTIL DIAL
NUMBER BECOMES ZERO

SAVE BIT MASK IN B

INITIALIZE TRIAL VALUE IN H
INITIALIZE TRIAL BIT IN L

GET CURRENT TRIAL VALUE IN A

FLIP CURRENT TRIAL BIT

SEND TO DIGITAL-TO-ANALOG CONVERTER
WAIT FOR 741°S TO SETTLE

READ COMPARATORS & SWITCHES
MASK TO GET CHANNEL OF INTEREST
JUMP IF TRIAL TOO HIGH

RETAIN TRIAL IF TOO LOW

SHIFT TRIAL BIT RIGHT 1

DO ANOTHER ITERATION IF ALL BITS NOT TRIED
LOAD FINAL RESULT INTO A
RETURN

DRAWS WITH MAJOR DEFLECTION SYSTEM

LBM
XRA
ouT
INL
LAM
ouT
INL
LAM
oUT
DCB
RTZ
INL
LAM
LAA
LAA
ouT

L

IN

LAM
ouT
JMP

ORG
EQU

DEF
DEF
DEF

ORG
DEF

DEF
DEF
DEF
DEF
DEF
DEF

ORG
DEF

DEF
DEF
ORG
DEF

DEF
DEF

DEF

ORG
DEF

MINXY

XSTOR

YDRAW
GRAPH1

1000B
.

40B, 131B, 136B, 147B

GET TABLE COUNT OF COORD PAIRS TO DRAW

RESET MINOR DEFLECTION SYSTEM
POSITION BEAM X COORDINATE

POSITION BEAM Y COORDINATE
DCREMENT COUNT
RETURN WHEN DONE

DELAY
DELAY
LOAD X COORD

DRAW LINE
LooP

ALL VARIABLES MUST BE LOCATED IN THE SAME
PAGE

BEGINNING OF DATA AREA

ZERO

167B,176B,171B, 160B

3408

DATA+20B

0KOB, 160B,050B, 1578

ONE

KEEPS PLAYERS® SCORE

PRESENT BALL X VELOCITY COMPONENT
PRESENT BALL Y VELOCITY COMPONENT
INDICATES BALL DIRECTION

USED TO DELAY BETWEEN SERVES

DATA+40B

0268, 1

111B,1

0,0,0,

37B,157B, 154B WO

10B,360B
0 PRESENT BALL POSITION

DATA+60B

030B, 170B,177B, 137B

074B,3

THREE

348

0,110B,111B,101B

3008

DATA+100B

0508, 1578, 124B,364B

PAGE 13

001104 005 BOARD DEF 5 001263 157
001105 200 200 200 DEF -128,-128,-128,127 001264 145 000 120 DEF 145B,000B, 120B,010B
001110 177 001267 010
001111 177 177 177 DEF 127,127,127,-128 001270 117 305 DEF 117B,305B
001114 200
001115 200 200 DEF -128,-128 . TABLE OF BALL VELOCITIES
001120 ORG DATA+120B 001272 144 000 012 ANGLE DEF 100,0,10,254 -79 DEG
001120 030 150 161 DEF 030B,150B,161B,163B FIVE 001275 376
001123 163 001276 304 000 047 DEF 196,0,39,254 -67 DEG
001124 133 136 366 DEF 133B, 136B,366B 001301 376
001127 000 120 127 RPADD DEF OB, 120B,127B,307B 001302 034 001 126 DEF 28,1,86,254 -56 DEG
001132 307 001305 376
001306 152 001 226 DEF 106,1,150,254 -45 DEG
001140 ORG DATA+140B 001311 376
001140 046 136 123 DEF 046B,136B, 123B, 120B SIX 001312 252 001 344 DEF 170,1,228,254 -34 DEG
001143 120 001315 376
001144 150 153 323 DEF 150B,153B,323B 001316 331 001 074 DEF 217,1,60,255 -22 DEG
001147 020 100 107 LPADD DEF 20B,100B, 107B,327B 001321 377
001152 327 001322 366 001 234 DEF 246,1,156,255 -11 DEG
001325 377
001160 ORG DATA+160B 001326 000 002 000 DEF 0,2,0,0 0 DEG FAST
001160 050 167 327 DEF 050B, 167B,327B SEVEN 001331 000
001332 000 001 000 DEF 0,1,0,0 0 DEG SLOW
001200 ORG DATA+200B 001335 000
001200 020 160 167 DEF 020B,160B, 167B, 127B EIGHT 001336 366 001 144 DEF 246,1,100,0 11 DEG
001203 127 001341 000
001204 120 024 364 DEF 120B,024B,364B 001342 331 001 304 DEF 217,1,196,0 22 DEG
001345 000 .
001220 ORG DATA+220B 001346 252 001 034 DEF 170,1,28,1 34 DEG
001220 050 157 137 DEF 050B,157B, 137B, 126B NINE 001351 001
001223 126 001352 152 001 152 DEF 106,1,106,1 45 DEG
001224 125 134 354 DEF 125B,134B,35UB 001355 001
001356 034 001 252 DEF 28,1,170,1 56 DEG
001240 ORG DATA+240B 001361 001 '
001240 040 131 136 DEF 040B, 131B, 136B, 147B TEN 001362 304 000 331 DEF 196,0,217,1 67 DEG
001243 147 001365 001
001244 167 176 171 DEF 167B,176B,171B, 160B 001366 144 000 366 DEF 100,0,246,1 79 DEG
001247 160 001371 001
001250 140 000 120 DEF 140B,000B, 120B,010B
001253 010 001372 SHIFT DST 4 RANDOM NUMBER REGISTER
001254 117 305 DEF 117B,305B . SET ANY WAY EXCEPT ALL ZEROES
001260 ORG DATA+260B 001376 END PING
001260 040 160 050 DEF 040B, 160B,050B, 157B ELEVEN

¢-128,127) 7 5 Gar2m)

;]

BALL RIGHT PADDLE
16 UNITS HIGH

END . END
ZONE (0,0) ZONE
LEFT PADDLE.
16 UNITS HIGH
(-128,-128) f (127,-128)
PADDLE ZONE PADDLE ZONE

X=-107,-108 X=104,105

START

VARMBLES

CONTAIN

INITIAL

YALUVES
) =1

¥ PING
DRAW SCORE,
PADDLES, AND
BOARD

YES

RESET
SCORE

| .

¥ SERVE
SET

RESTRICTED
RANDOM BALL
PosiTION

CALL RDISP
PICK VELOCITY
AT RANDOM

HIT?

COMPARE RIGHT
PADPLE. AND

YES

porP
SPEAKER

BALL
T10

COMPARE LEFT]

[PADDLE AND
BALL

l

CHANGE
BALL
DIRECTION

l

CALL RDISP
PICK VELOCITY
AT RANDOM

g

CLEAR BALL
AWAY FROM
PAPDLE ZONE

l2SITION |

EROM_TABLE.
¥ NxPog

NX
DRAW SCORE,
PADDLES,
BOARD, AND
BALL

COMPUTE
NEXT BALL
POSITION

BALL ToucH Top

NEGATE Y
VELOCITY

BALL
RIGHT PADDLE
ZONE

NO

ALL I
LEFT PADDLE

ZONE

NO

BALL),
END zONE? >-N2

YES
oF

BUMP SCORE

DEPENDING

ON BALL
T10

BEND
OF GAMET

YES

LooP

DRAW DIsPLAY
1256 TIMES
TO DELAY

" SURPLUS SUMMARY

Guess what! IMP-16 chip sets have hit a new low in
price. This is perfect timing, next issue of TCH will
begin a series on the 1IMP-16. The new deal is from
Poly-Paks who, in their latest flyer, have the 5 chip set
listed for $49.99.

Poly Paks
Box 942B
Lynnfield, Mass. 01940

Components useful for graphics displays have finally
shown up as surplus. Suntronix has a batch of Sanders 720
CRT heads. These heads are "dumb" units, i.e., they have
no buffer or character generator, all data comes in over a
cable. However they are great for graphics because they
used stroke type character generation rather than raster
scan. The power supply, CRT, deflection amplifiers, and
possibly even the DAC’s from the unit could be utilized.
Unfortunately, Suntronix is not shipping at this time due
to pending court action by Sanders regarding interpre-
tation of the word "scrap" in the contract.

Suntronix

6 King Richard Drive

Londonerry, NH 03053

Ph. 603/434-4644

Want an easy to use but somewhat weird replacement for

paper tape? well Delta t has one. Its an 8 track
incremental magnetic tape recorder, except the "tape" is a
16 MM magnetic film cartirdge. The wunit will read and

write 330 bytes
control data rate as long as
bytes/sec.). From their pictures the wunit looks well
built and they seem to have all the necessary items
including interface from the 12 volt logic to TTL and the
weird cartridges. The recorder goes for $250.00, the
modifications for TTL (assembled, installed, and tested)
adds $100, and extra cartridges go for $20.00. For
details write:

per second asynchronously (you need not

you do not exceed 330

Delta t
11020 014 Katy Road
Suite 204

Houston, TX 77043

TCH are still available and will ve
otherwise. The relay offer is
the supply is nearly exhausted so
two seperate checks, one for the

relays which we could return when

cassette boards
until notice is given
another matter however,
if you order them send
boards, and one for the
the supply is gone.

PAGE 15

CLASSIFIED ADS

There 1is no charge for classified ads in TCH but they
must pertain to the general area of computers or electron-
ics, and must be submitted by a non-commercial subscriber.
Fegl free to use ads to buy, sell, trade, seek inform-
ation, announce meetings, or for any other worthwhile
purpose. Please submit ads on seperate sheets of paper
and include name and address and/or phone number. Please
keep length down to 10 lines or less.

MEDICAL APPLICATIONS: I am interested in contacting indi-
viduals with a serious interest in the application of
microprocessor technology to medical instrumentation, and
automated diagnostic systems. Please contact James A.
Willis, 3013 Woodlawn Ave., Falls Church, VA 22042. Ph.
703/532-8242

FOR SALE: TMS 4030 2ZA0248 Dynamic RAM’s. 420ns access
time, 690ns cycle. Ideal for 8080 and IMP-16 micropro-
cessors. $13 each, 8 or more $10 each. Andy Pitts, PO
Box 5734, Winston Salem, NC 27103. Ph. 919/765-1277

FOR SALE:
resistors,
Street,

Precision 1%
$2.00 per 50.
Hillsboro, NC 27278

metal film 1/4
Postpaid. C.

watt
Funk,

100 ohm
711 Eno

FOR SALE: 10 CPS hard copy teleprinter with keyboard.
Exact equivalent of TTY KSR. Serial in/serial out. Only
one available. This will go fast at only $300. M. W.

Smith, 4355 S. High Street, Englewood, CO 80110

POWER SUPPLY: I have a gquantity of 5V 10 amp highly
regulated power supplies taken from keyboard terminals. I
will provide schematics and plans for obtaining -5V, -9V,
and -12v. $25 plus postage on 15 pounds. Grant Runyan,
1146 Nirvana Rd., Santa Barbara, CA 93101

CASSETTE TAPE ROM ORDER FORM

CPU Type (Z1 8008

Status input device address:

Control output device address:

i

8080

Memory page allocated to the ROM:

Memory load address for the IPL program:

Stack address for the IPL program (8080 only):

(Please specify all device and memory addresses

NAME

in octal)

STREET

CITY

STATE

Z1P

We can program 1702,
only program
$2.00 covers
An octal listing of the ROM

TCH can
charge of

time,
programming
cation,

contents

1702A,
customer supplied ROMS.

and return shipment.
will also be enclosed. We

and 5203 PROMS. At this
The
programming, verifi-

are using an unmod-

ified Intel PROM programmer and are strictly following the

manufacturer’s

programming

recommendations.

Any PROMS

that we cannot program successfully are definitely bad and

will be returned. The
marked to aid you in
supplier.

printout will
obtaining a
Unfortunately bad PROMS require as much effort

the errors
from your

have
refund

as good ones so there will be no refund.

THE COMPUTER HOBBYIST * FIRST CLASS
Box 295

Cary, NC 27511 POSTAGE PAID
CARY, NC 27511
ADDRESS CORRECTION REQUESTED PERMIT NO. 34

FIRST CLASS MAIL

