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As the title implies, TCH has developed a simple,
inexpensive controller for floppy disk drives. In fact,

it has been running in our 8008 system since December
1975. Like the cassette interface, graphics display, and
other projects, the floppy disk controller will run on any
kind of computer. This part 1 will describe the char-
acteristics and operation of floppy disk drives in detail
as well as give an accurate estimate of the costs
involved. The experience gained in transferring 2300
subscriber records to floppy disk and then updating
several hundred of them for address changes as well as
experience with a graphic image storage and retrieval
system convinces us that the design is bug-free and
reliable. Nevertheless, circuit diagrams will be held
until part 2, to be in issue #10.

Floppy disk systems are not expensive! At least not
as expensive as the $1200 to $3000 tags on commercially
available systems would lead one to believe. Here are the
hard facts on the cost of floppy disk system components.
The drive is the worst part. As will be detailed later,
drives from the various manufacturers are nearly identical
and this applies to the single quantity price tag too;
$625 to $750. The first quantity price break is about
$100 and occurs at 25 units for most manufacturers, In
100-up quantities, prices range from $400 to $450., This
is an example of what standardization and competition can
do. How about the controller? With TCH's interface and
less than 400 bytes of software, the controller is at most
$60 worth of components, circuit board included! Twenty-
five packages of very mundane TTL, two 2102 memory chips,
and a little software that fits neatly into two 1702's is
all it takes. The power supply is not a hassle either.
Most drives require +5 volts at about an amp, and +24
volts at 1.5 amps, loosely regulated. Some also need a
negative voltage at 50 MA or so. Twenty dollars more
worth of components should take care of the power supply.
All floppy disk drives have attractive front bezels.
Packaging can be as simple as sitting the unit on the
table. Mounting in a panel or large box however is just a
matter of cutting a rectangular hole in' the box front.
Floppy disks to keep the critter fed are typically $7.50
each. Minimum order quantities are either 5 or 10 disks,
This is not bad considering that the 300K byte capacity of
one disk is equivalent to two C-60 cassettes recorded on
both sides with a TCH audio cassette interface,

What kind of applications do the characteristics of
floppy disks make possible? An obvious one is maintaining
lists of information that are subject to frequent change
and which need to be printed periodically, such as address
lists. Maintaining such a list on tape is a pain at best
and certainly requires two drives. With a floppy, any
record can be retrieved, updated, and stored again in a
few seconds. Text editing, whether it be manuscripts, or
programs can be readily handled. The 300K byte capacity
of the disk allows massive program text files of 100 to
200 pages of assembly language code to be on one disk.
Assembling such programs is very rapid due to the fast
transfer rate. Of course keeping extensive program files
for debugging and demonstration purposes is a natural
application. All kinds of special purpose applications
present themselves. For example, Jim parker has written a
graphics operating system for use with a floppy. Files of
images, parts of images, and character shapes are stored
on the disk. New images may be created as a combination
of stored images and new graphic input. The stored images
can be moved around in the new image and in some cases
expanded or shrunk also. The new images can likewise be
stored on the disk for later recall or incorporation into
other images. The same concepts could also be applied to
electronic music composition. A practical small business
accounting system virtually requires disk storage, es-
pecially to implement the automatic functions that really
make such systems pay off. Game applications where the
program "learns" by maintaining a file of previous exper-
ience are almost endless. In each of these application
suggestions, the fast random access and update capability
of the floppy disk is central with the other character-
istics being of less importance.

That should be enough for vague generalities, lets

now at the individual system components and some of
their typical specifications. First we have the disk
itself, often called a "diskette" which is an IBM term.
The disk is a thin circular sheet of mylar (actually die
cut from a wide roll of computer tape) coated on one or
both sides with magnetic oxide material (see figure 1).
The outside diameter is 7.88 inches and a 1.5 inch round

look

ho}e is punched @n the center for slipping over the drive
spindle. An additional small hole is punched 1.5 inches
from the center and is called the index hole. For

environmental protection, this flimsy disk is enclosed in
a sealed, semi-rigid envelope lined on the inside with a
felt-like material. The envelope is 8 inches square and
hgs a center punchout so the drive spindle can reach the
disk. There 1is also a radial slot to allow the recording
head to reach the disk, and a small hole to allow a
lamp-photocell assembly to see the index hole as it
rotates py. Finally, an optional write protect hole is
punched into one edge of the envelope. Like cassettes,
the physical dimensions of floppy disks are standardized,
so all manufacturer's products are the same although price
and _quality could vary (they don't really, the only
significant difference is purchasing hassle). There is
one major variation however. The single index hole disk
just described is the IBM standard but also available are
disks which have 32 "sector holes" evenly spaced around
the disk on the same circumference as the index hole (see
figure 2). These are frequently called "hard sectored"
diskettes because the extra holes define 32 distinct,
physical sectors on the disk., Every major manufacturer
except IBM makes both styles and sells them for the same
price. TCH will be using the hard sectored variety for
reasons that will be made clear later,

It presently costs manufacturers about $1.50 to make a
diskette. Much of this cost is due to the "initializing"
process where a predefined data pattern is written all
over the disk. This pattern is required by systems using
the one-hole diskettes - byt not by hard sectored systems
even though the manufacturers write it on their 33 hole
disks anyway. There is great .potential for lower cost
diskettes ($1.98 each) as usage and competition increases,

Next we have the diskette drive (see figure 3) The
drives available from the 8 or so major manufacturers are

all so much alike that any differences are usually
confined to how the door closes and how fast the salesman
talks. There are a few significant differences however

which will be noted.
expose a narrow slot.

First there is a door which opens to
The disk envelope is pushed all the
way into the slot and the door is closed, trapping it
there. Since the door is about all the operator sees,
there has been considerable innovation in this area. Door
action ranges from a simple hinge and handle to push-
button latches which pop the diskette out like a toaster
when released. A prime example of poor human engineering
is the fact that the disk can be inserted into the drive
in 8 different ways and only one of them works. When the
door  closes, cam action moves the disk against a cone
shaped spindle which pokes through the large center hole.
A spring loaded female cone then engages from the other
side clamping the disk against the drive spindle. The
spindle is driven at a constant speed of 360 RPM by a
synchronous motor causing the disk itself to rotate inside

the felt lined envelope. Except for one manufacturer,
there 1is a noticable lack of innovation in the spindle
drive. Typically, a large wheel fixed to the spindle is

belt driven by an 1800 RPM motor mounted in the corper of
the drive. The belt is best described as a precision
rubber band. Several drive manufacturers even use the
same identical Bodine 4-pole, split capacitor, sync motor!
Pertec has taken a different approach on the FD-400. They
use a 24-pole 3-phase motor driven by a transistor
inverter powered from the 24 volt DC supply. The motor
runs at 360 RPM, thus it drives the spindle directly. The
only drawback is a higher acoustic noise level.

The head is on a carriage that can be moved radially,
in towards the center or out towards the edge of the disk
by a lead screw driven by a stepping motor. This carriage
can be positioned at any one of 77 discrete points spaced
about .02* apart by stepping the motor one direction or
the other. Seventy-seven concentric tracks = are thus
defined on the disk surface with track 0 being the
outermost and track 76 the innermost. A sensor, either a
microswitch or lamp-photocell detects when the head is
positioned at track 0. A step count must be kept to
ascertain the other 76 possible positions. Some drives
have two mechanical stops that prevent the head from being
positioned beyond the allowable range while others have
only one or none, Stepping speed is really the only
parameter where there is significant competition. Many
drives can step 100 times per second but several advertise
a rate of 166 steps per second. .Sycor beats them all at
400 steps per second for a maximum positioning time of 190
milliseconds.

CONTINUED ON 4
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LETTERS TO THE EDITOR

Gentlemen:

In regards to TCH's IMP-16 CPU, my thanks for a much
needed construction article. Several friends and I are
convinced this is the CPU we have been waiting for and
have started building one.

After spending many hours searching supplier catalogs
for hard to find IC's; looking for the lowest cost source
on other IC's and parts via price breaks, etc., we decided
to compile a list of parts by supplier. This list may be
of benefit to other hobbyists desiring to build the TCH
IMP-16 CPU. I would be glad to send a copy to other
hobbyists for $1.00 to cover postage and copying costs.

Also, we would be interested in communicating with
other hobbyists constructing the TCH IMP-16 CPU about
additional hardware and software plans. It would seem
that a TCH IMP-16 User's Group would be a real possibil-
ity.

Thanks again for leading the way with what promises to
be a superb series of construction articles for the home
computer hobbyist.

Fred Holmes
101 Broéokbend Ct.
Maudlin, SC 29662

It is easy to spot the enthusiasm in letters such as
the above. Many thanks for the letters of encouragement
from all quarters on our construction projects. Send
parts list orders directly to Mr. Holmes at the above
address.

Gentlemen:

Your editorial in the Vol. 1 No. 8 issue deals with
octal VS hexadecimal. Your decision is to adopt a "split
octal” notation. The decision is based upon accommodation
to the Intel microprocessors.

Several years ago we faced the same call for decision.
We went base-16. Reason-~the square roots of round
numbers are round numbers. Also the fourth roots. For
our Altair computer we have changed all instructions over
to base 16. This makes the instruction set difficult to
use--as you have noted. But this instruction set is
transitory. There is little doubt in this quarter that
the base-16 system is the system of “the future and that
the octal system will fade like an old soldier.

Appended is a photo of our Altair with the front panel
altered to accommodate the base-16 Computer Compatible
Digit. Also a copy of the instruction set. Also a
reprint of an EDN article discussing the system.

Incidentally we have interfaced a combinational key-
board to the Altair. With eight keys we send in the
operational codes directly. No encoding. Cuts costs
drastically. It took perhaps a day to learn the keyboard.
We also have the keyboard interfaced to a printer for
Computer Compatible Characters. On the next page appear
the digits of the base 16 numbering system, followed by
the lower case alphabet, followed by some text.

R. O. Whitaker

8
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The article referred to appeared in the February, 1974
issue of EDN magazine. I read the article back then and
was frankly intrigued with the ideas presented. However
two years of time and experience have taken their toll.
First, the advent of the $10 calculator proved that
7-segment displays and associated decoding can be done
economically. Second, with the present configuration of
the digit, there could be great confusion between 9 (N)
and 12 (/) when handprinted by a sloppy person. One only
has to read as many scrawled addresses as we do to
comprehend that problem. Finally, the economics of change
and the general conservatism of people are tremendous
obstacles to overcome. Look at the acceptance of the
Dvorak typewriter keyboard (invented in 1932 by Dr.
August, proven in tests to be 50 to 100% faster than
conventional keyboard with fewer errors) for one example.
Also look at the ongoing metric conversion effort in this
country. It is barely started, will take 10 to 20 years
to complete, will ultimately "cost" billions, and, sadly,
had to be administered by the government.

EDITORIAL

By now nearly everyone should be aware of the results
of the BYTE Standards Conference that was held in Kansas
last November. We won't attempt to explain in detail the
recordlpg method agreed upon since this information will
bg available in Byte and Popular Electronics. However
since Hal Chamberlin and Richard Smith were there for the
whole meeting and took an active part in the proceedings
we can give a "behind the scenes" report on just what
transpired and how.

First, a rundown on the participants. Two groups were
very conspicuous by their abscence. Scelbi Computer
Consulting wasn't there. If they had been, they probably
would have influenced the discussions considerably since
they were making audio cassette systems long before the
rest .of us had thought of the cOncept. Another absent
organization was The Digital Group of Denver, only about
309 miles from Kansas. As most of us know, they have been
quite successful to date in penetrating the audio cassette
interface market. Just before the conference they an-
nounced a speed tolerant version of their interface which
woulq certainly have been of interest to the other
participants. HAL Communications, well known for TV
Radioteletype gear, came but left upon realizing the
mismatch between their equipment offerings and the purpose
of the conference, SPHERE and Popular Electronics left
after the first two sessions (there were 4 in all). Les
Solomon of P.E. was vocal in his support of the HIT
format but unfortuantely could not answer the numerous
technical questions flying about. He was particularly
concerned about tape and recorder certification proced-
ures. Other active groups in attendance who lasted
through all 4 sessions were Godbout, Processor Technology,
Sogthwest Technical Products, Lee Feldenstein (Penny-
wh1st1§ 103), Ed Roberts of MITS, and Harold Mauch of
Pronetics. MITS did not really try to infulence the
proceedings but did occasionally bring up terms like
"defacto standard" in relation to their recording method.
Harold Mauch probably had the greatest influence since he
has participated in digital cassette standards activity
§nd has had much experience in the design of tape
interfaces for industrial applications. We feel that TCH
had a significant influence in issues such as record
format and motor control.

Oddly enough, Carl Helmers, editor of BYTE was not
there to run the show. Instead, Virginia and Manfred
Peschke, the publishers were. Virginia essentially took
notes and Manfred coordinated the sessions. While having
considerable programming experience with large-scale com-
puter equipment, Manfred had some difficulty with all of
the technical terms being thrown around. In a way this
was good since it forced the participants to be clear and
unambiguous in their explanations and arguments.
Incidentally, the conference was anything but a fun and
games exercise. It was straight work all day Friday and
Saturday morning with very little time off for social-
izing.

In the first session an organized engineering approach
was taken to the problem at hand. Goals were stated and
intended applications of the standard were established.
Tben the characteristics of 1low cost recorders were
discussed and listed. Finally, a workable set of perform-
ance specifications was established. Up to this point,
nothing  had been said about any particular recording
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method or existing system. The result of the morning
session was a fairly complete body of engineering data
needed to develop a recording method to meet the stated
oals.

g After 1lunch, each of the participants was asked to
explain his existing or proposed system in about 5
minutes. TCH was first and there were approximately 8
people in all who spoke. Three of the formats were so
similar that they could be considered identical (all
variations of the "Lancaster format" finally adopted).
The others were different and familiar to most of us.
After some random discussion, someone pointed out that the
formats which are based on the 11 unit teletype code
(standard asynchronous communication) would not need a
computer to encode and decode them. Within a matter of
minutes, a vote was taken and the decision made that the
standard would be asynchronous, 8 bit character oriented
data. This of course essentially eliminated the HIT
format and the TCH format from further consideration. We
also realized that because of the inherent speed sensi-
tivity of the asynchronous format and the fact that the
Lancaster method is the only reasonable way to recover a
speed tracking clock for a UART that the eventual outcome
would in fact be the Lancaster method.

The first part of the evening session was devoted to
other possible modulation methods that would be speed
tolerant and still give an 11 unit asynchronous character
structure. TCH still advocated the single pulse/double
pulse method of encoding zeroes and ones but @nAthe end
endorsed Harold Mauch's position paper detailing the
Lancaster method. The remainder of the evening and the
Saturday morning session was spent formalizing the results
and discussing other issues such as preambles, hgadegs,
checksums, interblock gap lengths and garbage rejection
during gaps. Unfortunately due to lack of time and energy
no decisions were reached on most of these data formatting
issues. Thus, at this time, the BYTE standard consists of
a method of putting 8-bit bytes on tape; essentially a
paper tape analog. As a result, there is still some wgrk
to be done before hobbyists can freely exchange anything
except ASCII text. o

In interpreting the results of the conference it is
important to remember that it is an interchange standard
and not necessarily the only acceptable or even the best
way to store data. After all, paper tape is the inter-
change standard for minicomputers but most all serious
data storage takes place on some other medium., The BYTE
standard does not seem to have slowed the development and
introduction of new cassette interfaces. However,‘compat-
ibility with the BYTE standard, perhaps by.fllppxng a
switch, will become an important interface attribute.

CLUBS ETC.

Each issue we will publish pertinenc information about
new computer clubs and significant changes in the status
of old ones.

LONG ISLAND, NEW YORK

Long Island Computer Association

Contact - Jerry Harrison, Chairman
36 Irene Lane E.
Plainview, NY 11803

SOUTH MIAMI, FLORIDA

South Florida Computer Group

Contact - Terry Williamson
P.O. Box 430852
So. Miami, FL 33143
305/271-9909

WISCONSIN
Wisconsin Area Computer Hobbyists
Contact - Don Stevens

P.O. Box 159

Sheboygan Falls, Wis. 53085

DETROIT, MICHIGAN

Tenative formation (Dearborn, Dearborne Heights,
Detroit)

Contact - Robert Tater
8476 Nightingdale
Dearborn Heights, MI 48127
313/279-0099

PITTSBURGH, PENNSYLVANIA

Pittsburgh Area Computer Club

400 Smithfield St.

Pittsburgh, PA 15222

Contact - Eric S. Liber
1156 Pennsbury Blvd. N.
Pittsburgh, PA 15222

officers: Eric S. Liber, President
Fred Kitman, Secretary-treasurer

NORTH READING, MASSACHUSETTES
Alcove Computer Club
Contact: John P. Vulla, President
230 Main St.
North Reading, Mass. 01864

NEW YORK, NEW YORK
N.Y. City Micro Hobbyist Group PAGE 3
Contact - Robert Schwartz

1E, 375 Riverside Dr.

New York, NY 10025

MIAMI, FLORIDA

Miami Computer Club

Contact - John Lynn
13431 SW 79TH ST.
Miami, FL
305/271-2805

It is about time that the Raleigh, NC area had a hobby
computer club. With this aim TCH is sponsering a "seed"
meeting. It is not our intent to run a club but merely to
start one, so come with organizational ideas in hand. The
mgeting will take place at the Plantation 1Inn on US
highway # 1 approximately 2 miles north of Raleigh.
Please park and enter at the rear of the main building.
The get-together will start at 1:00 PM Sunday, March 14
and will 1last until folks get tired. For the sake of
those who want to find out what hobby computing is about
TCH will have both its 8008 system and an Altair on demo.
The graphics display, cassette interface, and floppy disk
will also be demonstrated.

NOTES ON TCH

Starting with this issue all mailing labels will con-
tain your subscription number and the issue with which
your subscription will expire. This is possible because
all subscription records are now maintained on floppy
disk. In the past records had been a combination of
flip-file cards, two paper tape formats, and cassette
tape. Now that the disk system is implemented all address
changes to date have been verified and entered. If your
newsletter is incorrectly addressed and you have not
changed address in the last two weeks, then we missed your
change of address; please resubmit it.

Effective immediately rates for back issues and
foreign subscriptions are increasing. As you might sus-~
pect this is partially due to increased postal rates. The
other factor is that TCH was originally planned for 1
ounce editions, but recent editions have consistantly been
larger. Regular subscriptions in the U.S.A will not
increase bacause they are mailed third class where-as the
back issues and foreign cannot be. This change affects
only remittances from this date foreward. Items already
paid for will be shipped at the original price. New rates
for backissues and foreign are shown below:

Backissues in U.S.A., Canada, Mexico $ .65
Backissues foreign, surface mail $1.00
Backissues foreign, air mail $1.50
12 issue subscription U.S.A. $6.00
12 issue subscription Canada, Mexico $7.50
12 issue subscription foreign, surface $11.50
12 issue subscription foreign, air $16.00

Cassette interface boards, 8080 wirewrap boards, and
regulator kits are still being shipped. Some orders for
the 8080 wirewrap board have been delayed however. This
is because TCH was faced with back orders from both our
vendors on the heatsinks for the regulator kits. Hope-
fully this is now cleared up. Also cassette ROM pro-
gramming and IMP-16 documentation is still being offered.

TCH is still seeking articles from outside authors.
So far only two articles have been submitted (one of them
was published last issue), but many people have inquired
about writing for TCH. Rather than send out a flock of
letters to potential authors, the needed information will
be presented right here.

What is TCH 1looking for? General interest articles
about both software and hardware. General interest means

_that it is not about your personal unique system or device

which no one else would care to duplicate. Also articles
which primarily describe some company's product are not
suitable for TCH. We will leave those to the big guys who
have more space to fill. What does that leave? Plenty!
Stories about the application of readily available devices
such as joysticks, oscilloscopes, TV sets, electronic
music devices, tape recorders, and miscellaneous nifty
IC's. Programs for any of the common microprocessors are
of course interesting to many people.

what is it worth and how should it be submitted? TCH
will pay $20 per page as printed for material. This
includes drawings, listings, and photos. Material sub-
mitted should be typed or neatly written. If you must
send your only copy of something, please say so or it may
not be returned. It is desirable for programs to be
accompanied by a flowchart. Any pictures should be black
and white. If any editing other than grammatical correct-
ions is needed, the author will be notified before
publication, therefore please include your phone number.

What about advertising? TCH is now accepting paid
advertising. Four formats are offered. Full page (7.5" X
10.5"), half page (7.5" X 5" or 3.75" X 10.5"), and
quarter page (3.75" X 5") are available and cost $70, $40,
and $25 respectively. This price is for "camera ready"
copy. Ads can be set at extra charge. TCH reserves the
right to reject any ad and prices are subject to change as
our subscriber base of 2,300 continues to expand. For
further details write to: TCH, Box 295, Cary, NC 27511.
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Normally the head surface protrudes through one of the
slots in the disk envelope and is held at a barely grazing
distance from the disk surface. To read or write, a
pressure pad is lowered to the other side of the disk
directly opposite the head to press the magnetic coating
against the head. All drives use the guts of a relay to
move the pressure pad back and forth. The so-called head
load and unload then is really pad load and unload and is
accompanied by a resonant clank. The Pertec FD-400 is an
exception since both the head and the pad move towards
each other during head loading. Head load time is in the
range of 10 to 50 milliseconds.

Another lamp-photocell assembly in the drive detects
the passage of index or sector-index holes. A simple
timing circuit is required to tell the difference between
the index hole and the sector hole. Some drives may
require readjustment of the photocell amplifier gain in
order to resolve the closely spaced holes.

All floppy disk drives employ what we call a "flux
transition interface" for getting data bits in and out of
the drive. For our purposes at this time a "flux
transition" has exactly the same meaning as "pulse" did in
describing the TCH audio cassette interface (see Vol, 1
#5). Data on the disk is represented as an isolated flux
transition (pulse) for a ZERO and two closely spaced flux
transitions for a ONE. Unlike the tape however, the
spacing between individual bits is not allowed to vary.
Using numbers, the bit spacing is 4uS and the transition*
to-transition spacing for a ONE is 2uS. When writing, the
controller must supply properly timed pulses to the drive
which translates them into flux transitions on._the disk
surface. When reading, the drive picks up the flux
transitions, converts them to pulses, and sends them back
to the controller with the original timing nearly intact.
This data coding method permits over 300,000 bytes to be
recorded on a single diskette. Another method, called
Miller encoding or MFM, can double the storage capacity
and data rate if the drive is capable of pulse timing
errors of less than luS. This "double density" technique
will be explored more thoroughly in a future article.

. Most of the drive manufacturers offer numerous extra-
cost options for special applications or to simplify
controller design. The features that have been discussed
are present on the base models of all manufacturer's
drives.

Now we come to the sticky problem of data format on
the disk. Actually everyone agrees on the basic record
format; some leading ZEROES for synchronization, a data ID
pattern, useful data (fixed length), CRC characters, and
gome trailing ZEROES. The difficulty arises because the
data capacity of a full track which is about 4K bytes is
inconveniently large. Two fundamental methods of breaking
up a track into shorter records called sectors have
evolved. The differences relate to how the desired sector
is located without having to read or write all of them.

The IBM method is called "soft sectoring” and utilizes
the one hole pre-initialized diskettes. Each sector
consists of an "ID record" followed by a data record. The
ID record contains the sector number of the following data
record. When a read or write is to be performed, the disk
controller 1logic must search for the 1ID record that
matches the desired sector number (the sectors are not
necessarily in order) and then read or write the following
data record. The ID and data records are distinguished by
a special byte called an address mark, Address marks
consist of a peculiar pulse pattern that does not conform
to the usual double frequency method of data encoding. A
special decoder is required that can recognize these odd
pulse patterns (there are actually 4 different ones) and
reliably distinguish among them. Using this sectoring
scheme there is room for 26 sectors on a track. Addition-
ally, a track is reserved for an index, two are reserved
for alternates (in case of a damaged disk), and one is
just plain reserved. The total number of useful data
bytes is thus 73*26*128 or 242,944 bytes. It should be
noted that actual data exchange with IBM equipment re-
quires far more than adherence to the physical data
format; the data itself must be formatted and indexed
according to a complex set of "logical format" rules.

Use of the 33 hole diskettes is an alternative
sectoring method. The individual sectors are delineated
by pulses from the photodector in the disk drive. Determ-
ining when the desired sector has been reached is simply a
matter of counting pulses starting at the index. A
sophisticated controller can maintain a continuous count
so that at any point in time it knows what sector is
coming up next. Records are simply written and read
between the two sector pulses that define the desired
sector. With hard sectoring, 32 sectors of 128 bytes each
will fit on a track for a total capacity of 77*32%128 or
315,392 bytes. A potential drawback of hard sectoring
apart from non-IBM compatibility is a lack of "sector
address verification" preceeding a read or write. 1In
other words, a disk drive malfunction such as missed
stepping motor pulses or mis-counting of sector pulses may
cause reading or writing of incorrect sectors without an
error indication. A simple solution which has been found
to be effective is to initialize the CRC register to the

track and sector number before reading or writing instead
of initializing it to zeroes. Then if an incorrect sector
is read, a CRC error will be sianaled. A read before a
write will at least assure that the head has been
positioned at the correct track.

TCH has chosen the hard sectored approach for a floppy
disk interface. Actually, anything else could hardly be
called "“super simple". The main problem with the IBM
format in a mainly software driven interface is the
limited amount of time between the 1ID record and the
following data record. There is simply not enough time
for software to decode the bit stream and decide if the
desired sector is next before it arrives. Also, IBM
compatability precludes consideration of double density
data recording.

Why are commercial floppy disk controllers so expen-
sive? The typical controller operates almost totally
automatically. The CPU simply tells it what track number,
what sector number, and a starting address in memory and
the controller takes care of the rest via a direct memory
access interface. Step counts are computed, sectors are
counted (or recognized), data 1ID's are recognized, CRC's
are computed and checked, data is serialized and deserial-
ized, and memory addresses are counted. Additionally, the
commercial 3jobs sometimes have elaborate error recovery
logic built-in such as automatic retry. Also, multiple
drives can be handled, usually with simultaneous stepping
and sector counting on several drives. IBM compatible
controllers often include logic for initializing diskettes
as well as reading and writing and some can handle both
IBM and hard sector formats. What this adds up to is a
lot of IC packages, as many as 200 for an IBM compatible
unit. For comparison, count up the number is IC's in an
Altair or even a NOVA or LSI-11. Although some of the
controller functions can be handled by a microprocessor,
many of them occur at such high speed that they must be
handled by hardware. Of course, these commercial control-
lers offer very high performance such as constant high
transfer rate (reading and writing consecutive sectors)
and very little load on the host processor.

How do we plan to reduce the controller complexity to
only 27 packages? The obvious answer is to do everything
possible in software. For example, software will issue
step-in and step-out pulses to the head motor and keep
track of which track the head is on. Software will wait
for the index pulse and count sector pulses until the
desired sector is reached. Software will serialize and
deserialize the bit stream and calculate the CRC in much
the same manner as was done in the audio cassette
interface. Software will also control loading and unload-
ing of the head. Hardware is still required for some
functions. Encoding and decoding the double frequency
pulse train, distinguishing index from sector, and start-
ing and stopping data transfer immediately at sector
boundaries are major hardware functions. The only high-
speed operation is transferring the bits to and from the
disk at 250,000 per second. Two 2102 memory chips will be
used as a buffer between the fast disk transfer rate and
the slower CPU/program transfer rate. All.timing will be
handled by the interface making it CPU speed independent.
Believe it or not, the interface will require only one
input port and one output port with 4 bits used in each!

What performance characteristics of the floppy disk
are sacrificed with the super simple interface? The
primary one is transfer rate. An overall average transfer
rate of one sector per disk revolution can be expected
which is about 750 bytes per second. A special high
performance routine may be able to achieve up to 3000
bytes per second. All of the other desirable character-
istics are maintained however, especially the random
access and update capability. An advantage of the soft-
ware driven interface is greater reliability; freedom from
infrequent and often puzzling disk controller mal-
functions.

How useful is a floppy disk system without a "disk
operating system" monitor program? Conceptually, a floppy
disk is simply a collection of 2464 individual records of
128 bytes each. Each record is addressable much like a
memory location. All kinds of dedicated applications such
as those described earlier can be easily written without
even knowing what a disk operating system is. The user
would develop storage and indexing techniques that are
best suited for his application. Take for example the
storage method used in our floppy based mailing list
program. There are 1000 subscribers on a disk and two
sectors allocated to each subscriber. To find a sub-
scriber, the program simply computes ((Sub. No.) MOD
1000)*2+126 to get a composite sector number. The track
is the quotient when the composite is divided by 32 and
the sector is the remainder.

The super simple interface along with the 400 byte
support software can also be used with existing disk
operating systems. All that generally needs to be done is
to locate the subroutine that actually handles reading and
writing on the disk and replace it with calls to the
support package. More extensive modification is required
if the original disk system had a different sector size or
different number of sectors per track.
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F16.1 DISKETTE PHYSICAL
DIMENSIONS

FIG. 2 HARD SECTORED DISKETTE

In issue number 10, the design, construction, oper-
ation, and programming of the floppy disk interface will
be described in our usual level of detail. Also there
will be a listing of the floppy disk routine necessary to
operate the interface. 1In order to formulate support
plans beyond that point, we would like to. have some reader
feedback. 1In particular, is there interest in PC boards
and PROM programming for the floppy disk interface as
there was for the TCH audio cassette interface? A simple
postcard will do. We intend to remain the best publi-
cation for the serious computer hobbyist if not the
biggest or most regular.
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F16.3 TYPICAL FLOPPY DISK DRIVE

Following is a listing of the major floppy disk drive
manufacturers. With one exception, a TCH staff member has
seen a sample drive from each of the companies listed.

FLOPPY DISK DRIVE SUPPLIERS

Orbis Systems
14251 Franklin Ave.
Tustin, CA 92680

California Computer Products
2411 W. LaPalma Ave.
Anaheim, CA 92801

PERTEC, Peripheral Equipment Div.
9600 Irondale Ave.
Chatsworth, CA 91311

Control Data Corp.
P.O. Box 0
Minneapolis, MN 55440

Shugart Associates
435 Indio Way
Sunnyvale, CA 94086

SYCOR

100 Phoenix Dr.

Ann Arbor, MI 48104

(We have not seen this drive)

Remex

1733 Alton St.

Santa Ana, _CA 92705

(These people resell Orbis drives,
may be easy to deal with)

DISKETTE SUPPLIERS

DYSAN Corporation

2388 Walsh Ave.

Santa Clara, CA 95050

(We have gotten excellent
service from these people)
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AN IMP-16 MICROCOMPUTER SYSTEM PART 2 by Hal Chamberlin

Things are changing so rapidly that the first para-
graph of these installments will have to be devoted to
news items. Poly-Paks no longer has IMP-16 sets. We
don't know if IEU still has them or not: However all
surplus IMP-16 chip sets come through Godbout so perhaps
some letters will persuade him to sell them directly. of
course all National distributors have some; TCH has gotten
them this way for $160. The real problem is that they hit
the surplus market too early. We got some more data on
the "power math" CROM. Basically it provides instructions
for operating on 32 bit binary fractions (mantissas) such
as 32X32 add, subtract, multiply, divide, and normalize.
The user need only code exponent handling and the result
is a floating point package with 32 bit mantissas (10
decimal digits) and 16 bit exponents (10**10000 anybody?)
with a 100 uS add time and a 600 uS multiply time. The
bad news is that "power math" and the extended CROM share
some op-codes so they cannot normally be used together.
There is a way to enable one or the other using a status
flag however (status flags can be saved during interrupt).
Implementation of the scheme requires the use of a 74LS260
in place of the 74LS54. PC layout of the CPU board is
planned but some readers couldn't wait and have already
started to wire-wrap CPU boards. At least 3 TCH staff
members will be building IMP systems and at least one of
them will have a floppy disk so software support will not
be lacking toward summer. Quick note: do not buy plain
2107 4K RAM's for this system! They have a different
pinout, are very slow, and in a word, totally obsolete.
TMS4030, TMS4060, 2107A, and 2107B are all fine as well as
most gradeouts. The author has a 1limited supply of
TMS4030-2A0248 4K RAMS tested for operation in this system
for $7.50. An error was made in the parts list for the
memory board. Rather than three 7404's, it should be two
7404's and a 7440.

Now with the news out of the way, let us take a
top-down approach to describing the PUNIBUS controller.
The bus controller runs continuously, non-stop, from
power-up to power-down crunching out 1.43 million cycles
per second or one cycle every 700NS. All memories in the
system likewise operate at this cycle rate. Each cycle is
awarded on the basis of priority to one of 7 possible
requesters. The highest priority requester is the CPU.
Below the CPU are 5 direct memory access (DMA) devices.
The lowest priority requester is the memory refresher
which is always requesting bus cycles. Thus if the system
is idle, that is, CPU halted 'and no DMA activity, all of
the bus cycles are being awarded to the memory refresher.
During operation, cycles that are unclaimed by the CPU or
DMA are also awarded to the refresher. The PUNIBUS
controller always generates the timing signals necessary
for data transfer regardless of which requester controls
the particular cycle. Thus DMA devices in the system
don't have to generate any timing of their own, instead
they just sit and respond to control signals issued by the
PUNIBUS controller.

Any device interfaced to the bus that is not a
possible DMA requester is expected to behave as if it was
a memory. At the beginning of every bus cycle a 16 bit
address is established. This address specifies either an
actual memory location or a peripheral device register.
There are only two types of bus cycles; a read cycle and a
write cycle. During a read cycle, data is read from a
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memory or peripheral register into the CPU or DMA device.
During a write cycle, data is written from the CPU or DMA
device into a memory or peripheral register. The CPU or
DMA device awarded the cycle determines whether a read or
a write cycle is to be performed. The memory refresher,
of course, always does read cycles. Undefined operations
such as addressing non-existant memory or writing into a
read-only peripheral register are not harmful and function
as NO-OP bus cycles.

Figure 1 shows the timing relationships of the
PUNIBUS. Although actual times in nanoseconds are given,
it is important to note that correctly designed interfaces
to the bus will work properly even with considerable
variation in the timing details as long as the basic
relationships are retained. This allows flexibility to
cbange the details to accomodate other CPU's such as a
bipolar IMP or a down-spec chip set without obsoleteing
memory and peripheral designs.

As can be seen, a bus cycle starts with the signal BUS
ADDRESS ENABLE (BAE) going high and terminates when it
goes high again for the next cycle. Actually though, some
preparation takes place toward the end of the previous
cycle. An internal "priority strobe" is generated which
causes the BU REQUES! (E%j lines including CPU and
refresh request to be examined to determine who will get
the next cycle. Thé determination is made and the three
bit grant code of the winning requestor is placed on the
BUS GRANT (BG) 1lines immediately before the cycle com-
mences with BAE going high. At this time the one
requestor whose code is on the BG lines is expected to
gate a 16 bit address onto the BUS DATA (BD) lines as long
as BAE is high. Any BD lines not specifically driven will
assume a ONE level because of pullup resistors. If a
write cycle is to be executed, the BUS WRITE REQUEST (BWR)
line should be pulled down during BAE time, otherwise a
read cycle will be automatically assumed. This address
phase of the cycle is identical for both read and write
operation.

After the address phase we have the data transfer
phase which is different for read and write cycles. 1In
the case of a read cycle, the bus controller generates two
signals, BUS DATA OUT ENABLE (BDOE) and BUS DATA OUT
STROBE (BDOS) which control the data transfer from memory
or peripheral register to CPU or DMA device. BDOE first
goes high to cause the addressed memory or peripheral to
gate 1its data onto the BD lines. EDG% is bracketed by
BDOE and can be used to strobe data from the bus into the
CPU or DMA device's data register on its trailing edge.
The timing of this pair of pulses is chosen to allow
memories sufficinet access time and to allow the IMP-16
chip set to grab the data directly from the bus with no
intervening latches.

During the transfer phase of a write cycle, BDOE and

BDOS remain inactive while BUS DATA IN ENABLE (BDIE) and

BUS WRITE ENABLE (BWE) control the data transfer from CPU
or DMA to memory or peripheral. BDIE becomes active first
causing the CPU or DMA device to gate the data to the
written onto the BD lines. BWE which is bracketed by BDIE
then becomes active causing the memory or peripheral to
accept and store data from the bus. The timing shown for
these signals was chosen to be compatible with the 4K
RAM's used in this system.
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The responsibilities of a memory board or peripheral
interface are quite simple. During the address phase of
each cycle, pertinent information about the 16 bit address
on the BD lines must be latched on each interface board.
Generally, a memory interface using 4K RAM's need only
latch a single bit since the RAM chips have built-in
latches for address and chip select, The single bit
needing a TTL latch simply indicates whether the board was
addressed or not. Likewise, a peripheral register can
decode its address directly from the BD lines and use a
flip-flop to remember if it was addressed. 1In either
case, the 1leading edge of BUS CE is used for address
strobing since it always occurs when the address is valid.
Once a memory or peripheral has latched the fact that it
was addressed, it either sends its data out if it sees
BDOE or accepts new data in if it sees BWE. Thus memories
and peripheral registers are passive, merely responding to
bus signals as they occur.

Four ‘“convenience" signals are provided on the bus.
One which has already been mentioned is BUS CE. Memory
boards using 22 pin 4K RAM's can simply amplify this
signal to NMOS levels and apply it to the Chip Enable
clock input of the RAM chips. Its function within the RAM
is to start up the memory cycle and also strobe the
on-chip address and chip select latches. _Another signal
provided specifically for memory boards is BUS MDR STR%BE.
Its purpose is to strobe the data out latches on the
memory board when data out from the 4K RAM's is valid.
Some unfortunate timing constraints on both TMS4030 and
2107 type RAM's require latches to hold the data after it
disappears from the RAM outputs. Although BDOE could have
been turned on earlier with the leading edge strobing the
latches excessive noise generation would have resulted.
BUS 1/0 ADDR is a signal that goes low whenever the binary
value on the data lines is between FF00 and FF7F hexadec-
imal. This range of addresses is normally assigned to
peripheral devices. Use of this signal in decoding I/0
addresses can save a 9-input AND gate equivalent on each
interface card. BUS CLOCK is provided as a convenient
high frequency clock with .005% accuracy. Its freguency
is  such that when put through a 16 bit divider, the
resulting frequency is middle C, 261.625 Hz. Addition-
ally, 12 cycles of this clock make up one bus cycle whose
length is actually 699.88NS.

Two signals are involved with power-on reset and
console reset. The bus line should be pulled low
by an external circuit associated with the power supply
when all supply voltages are present and stabilized. This
circuit should also be connected to the console reset push
button 8o a power on sequence can be simulated without
loosing memory contents. A simple delay circuit is shown
in figure 2 which functions quite well. Alternatively, a
true - power -monitor can -be built using zener -diodes_to
sense when the supply voltages are q;éa;élxﬁgresent. BOS

is generated 1in response to by the CPU
board. It resets the CPU and should reset all peripheral
interfaces to a safe, idle condition when it goes low. It
has no effect on the bus controller or memory refresher
however.

The interrupt system uses the very simple software

ollin technique described elsewhere in this issue. The
%FTFT line is a wire-or line with pullup
resistor which is pulled low by any device that wants to
request an interrupt. The CPU responds, provided its
master interrupt enable is on, by calling a subroutine at
0001 and simultaneously turning master interrupt enable
off. After saving status, the program can look at the
status register of each possible interrupting device to
determine who is requesting. This search can be as fast
as 9.8uS per device with proper use of the SKAZ (SKip if
And is Zero, ANDs addressed memory location with a
register and skips the next instruction if the result is
zero) instruction. The device service routine then turns
off the interrupt request for that particular device and
turns master interrupt enable back on. Priority in the
case of simultaneous interrupts is determined by the order
of scanning. Nested interrupts can also be programmed.
Thus the interrupt system essentially works like that on a
PDP-8. The wusual interrupting device interface also has
an interrupt enable for each device making non-interrupt
1/0 programming possible if desired. More details on I/0
interfacing and interrupts will be given in part 4.

Figures 3 and 4 show the timing generator and bus
controller. Since this circuitry is on the CPU board,
some CPU circuitry has encroached which will be described
in part 3. See TCH #2 if any of the logic gate symbols
are confusing. You will note that inputs always enter
from the left of a drawing and outputs leave at the right.
All signals going offpage are given a name and should mate
with similarly named signals on the other pages. If an
offpage signal has a number on it, it goes to the CPU
board edge connector. If the number is 46 or less, it is
a bus signal and is available at the same pin number of
any board in the system. Some signals shown in figure 3
and 4 will not be mated until part 3.

The heartbeat of the system is the 17.145893 mHz
oscillator in figure 3. Its output drives a hex latch and
is buffered to drive the BUS CLOCK line. The latch and
two 32 word by 8 bit bipolar PROM's make up the bulk of
the timing generator. As can be seen, 6 of the 16 PROM
outputs go to the 745174 hex latch and 5 of these are fed
back to the PROM address inputs. The result is that every
cycle of the 17 mHz clock causes the PROM-latch combin-
ation to take one step in a programmed sequence. Using
the PROM pattern in figure 5, this sequence is 24 steps
long and takes 1l.4uS to step through thus matching the

minimum IMP-16 microcycle time. 1In order to avoid glitch-
es at the PROM outputs when the address changes, the
sequence of addresses has been chosen such that only one
address line changes at a time. Figure 6 shows the PROM
pattern in time sequence rather than address sequence.
The 8 addresses not normally used all point to time state
zero to avoid a possible lockup condition. The sequence
of addresses was also chosen so that a decoder could be
used to generate the 4-phase non-overlapping clock needed
by the IMP-16 chips from 3 of the address bits.

The remaining 11 PROM bits are the various system

timing signals. Those prefixed RAW require additional
gating before being used; the others are ready to go.
MDR STROBE goes through the latch to effect an additional
30NS delay. The purpose of the flip-flop connected to the
4-phase decoder is to insure that the CPU starts up on
phase 1 after a system reset. Although 8223 PROM's with
pullup resistors are shown, a tri-state PROM such as an
82123 can be used without the resistors.

System reset and power up control are handled by the
two 7413 Schmidt triggers and other discrete circuitry at
the bottom of figure 3. The first 7413 gives a snap-

action response to BUS POWER OK which may be a slowly
changing signal. The R-C _network and second 7413 provide
a signal that tracks BUS POWER OK but with a several
millisecond delay. This delayed signal, after inversion,
becomes BUS RESET. The transistors apply -12 volt power

to the IMP chips when bus power is OK and remove it
otherwise. BUS RESET also controls application of the

4-phase clocks to the microprocessor. Thus the timing
relationship between power application and removal and
clock application and removal is such that the IMP is
properly initialized.

The logic in the upper third of figure 4 modifies some
of the timing signals from the PROM according to_bus cycle
type; read or write., Flip-flop 1 samples §U§__W%TTE
REQUEST at the leading edge of BUS CE and retains the
read/write decision for the remainder of the cycle. The
network at the top of the page consisting of a 7432 and
7410 delays the fall of BUS CE by 50NS during write
cycles. It behaves as a simple inverter during read
cycles. Lengthening BUS CE during write cycles only
provides improved timing margins for writing into 4K RAM's
without unnecessary power dissipation during read cycles.
The gates on and BDOE gate these signals on for read
cycles and off for write cycles. Likewise, BDIE and BWE
are gated on for writes and off for reads.

The network starting with the 74LS21's is a partial
address decoder. If the address on the bus is between
FF80 and FFFF, flip-flop 2 is set indicating that the
on-board bootstrap ROM has been addressed. If the address
is between FF00 and FF7F, BUS I is activated to
inform peripherals that an I/O address is on the bus.

The next group of logic is the cycle request and grant
priority 1logic. Gating for CPU cycle request and the 5
DMA request lines go into a hex latch that is strobed by
PRIORITY STB near the end of each bus cycle. The latches
are necessary to hold the input to the priority encoder
constant throughout the next cycle. The 74148 determines
the highest priority input present (active low, A is
highest, H is lowest priority) and outputs a 3 bit code
identifying that input. The G input is not used in this
drawing but could be used for a sixth DMA request along
with a latch. The H input is refresh request which is
always present.

The bottom of figure 4 is the refresh logic for all
dynamic memory in the system. A 74LS20 detects the
coincidence of refresh grant (111) and BAE which indicates
that the refresh address should be placed on the bus. The
output thus enables an 8097 which gates the 6 significant
refresh bits onto the bus. The other 10 bits assume a
logic 1 and the bus controller assumes a read cycle. When
the 8097 is gated off again, a 6 bit counter made from a
7474 and a 7493 counts up one notch in preparation for the
next refresh cycle. Two 8556 tri-state counters could
have replaced the 7474, 7493, and 8097 used here but they
were too hard to get to justify their use.

That concludes the description of the bus controller.
Everything else in the system is just a collection of bus
interfaces. Although the remainder of this series will be
specifically concerned with IMP-16 interfacing to the bus,
the basic concepts and bus structure can be used with any
microprocessor. In fact, an essentially identical bus
system was used in the design of a super 8008 system over
three years ago.

In the next issue a brief description of the IMP-16
chip set will be given along with the remainder of the CPU
board schematic and accompanying discussion.
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CLASSIFIED ADS

There is no charge for classified ads in TCH but they
must pertain to the general area of computers or electron-
ics, and must be submitted by a non-commercial subscriber.
Feel free to use ads to buy, sell, trade, seek inform-
ation, announce meetings, or for any other worthwhile
purpose. Please submit ads on separate sheets of paper
and include name and address and/or phone number. Please
keep length down to 10 lines or less.

HELP WANTED: I have some core stacks that I wish to lash
up to my Altair 8800. I have no info on them except that
I believe they are from Burroughs equipment. There are no
drivers or sense amps, only core frame and glass diodes
galore. Would appreciate hearing from anyone that may be
able to help. Stanley D. Davis, RD 1, Stittville, NY
13469

FOR SALE; MITS RS-232 serial I/O board for the Altair 8800
(88-SI0OA), assembled and tested, $80. Expander mother-
board (88-EC), $8. Processor Technology MB-1 full-width
16-slot heavy-duty motherboard for the 8800, $25. David
Richards, 6655 Hill St., El1 Cerrito, CA 94530, Ph.
415/529~0759

n
°
<
'
n
©
<
N

LOAD REG

RAW WRITE ENAB

ROM ADDRESS

T o

W
S

CUTWRN =PRI NLWN —O |TIME STATE
o—u¥BHL=G~wTSER

178
1812
1928
20{20
2116
22/18
232

oo-_——————aoao—'———————oo RAW ADDR ENAB

CO0OO0O0CO0OO0O—000000O0O0DO0OO0O0~0 O O O O |RAW MDR STROBE
CO—=—0C00C0O00O0O0O0OO—000 O©0O0C OO O O |PRIRITY STROBE

°°°°°°°°°———-_-_—————°°° NEXT ROM ADDR |

00O ==0000000000O0O00OOOO© O O CPUDATA IN ENAB
CO0O0OCO0O0OO0OOO0COCO0OO0COO0ODO0OO0OOCOOC O —O O |CPVFLAG ADIR STB
_—_— 0 00000~ —== =000 O © © — — — |RAW DATA IN ENAB
0CO0O0CO0O—~—00000O000O0O0O0—0 00 OO0 O O |RaAW DATA OUT STB
———°°°————————-°°°—————_ RAW DATA OVT ENAB

—_—_ Q0O === QOO0 == =0 ~==0O © O ~ = | NEXT ROM ADOR 4
- = QOO OO OCOCOOCOOOO ™ = eo av aw == == == == | NEXT ROM ADDR 2

—— e e = QOO0 === =— 0000 O O O |RAW CE

OO == =0 OO~ = =000 O — = = = = O |NEXT ROM ADDR ¢
00 OO == OO O = m=—e—m = OO O = = — — | NEXT ROM ADDR 8
e T e o G e - - - an an ww wm O) e o o o — — | C

—_—e— e = QOO0 OO0 == e e =000 = —— =

FIG.6 TIMING ROMS IN TIME SEQUENCE

WANTED: Floppy disk drives and matrix printer. Send
information including condition and prices to Fred Holmes,
101 Brookbend Ct., Mauldin, SC 29662.

FOR SALE: Wangco model 7 tape drives, NFE model 250
cassette drives (Cybertronics sells an Altair interface
board), 4Kx12 memory systems, Tally line printers, paper
tape readers, paper tape punch, TMS 2501 NC's, 3002, 3003,
3113, 7491, 1414L, 710, 741. Please inquire and make
offer. Also interested in corresponding with hobbyists
interested in COSMAC. John L. Marshall, Box 242, Renton,
WA 98055

FOR SALE: Tired of waiting for MITS memory boards? I have
two MITS 4K dynamic memory boards for sale at the kit
price of $195 each. These boards were carefully assembled
by an electrical engineer and factory checked. All bits
certified. H. S. Corbin, 11704 Isben Drive, Rockville,
MD 20852, Ph. 301/881-7571

FOR SALE: BELL 103 compatible modem PC cards. These are
field rejects but include documentation. $17.50 post-
paid. D. Blevins, 1857 Babe Ruth Ct., San Jose, CA 95132

NEW CLUB: If you live in the metropolitan New Orleans area
and are interested in computers, you are invited to join
our group. Whether your interest is hardware, software,
applications, or 3just general interest we welcome your
input. For further details, please write or call: Emile
Alline, 1119 Pennsylvania Ave. Slidella, LA 70458, Ph.
504/641-2360

FOR SALE: ASR 33 in good condition with stand and some
extra features. Sprocket feed platten, self contained
power supplies and relays for tape reader control - ready
for 6 wire computer hookup. Local pickup only. $425.00.
Neal Sheffield, Jr., 108 Elmwood Terrace, Greensboro, NC
27408, Ph. 919-275-7720

WANTED: Software for business applications that will run
on 8080 micro computers. Will buy, trade, or distribute
for costs plus royalities (where required). John Lynn,
13431 SW 79 st., Miami, FL 33183, Ph. 305/271-2805
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Many applications of hobby computers can benefit from
the use of interrupts. MITS and a couple of other
alternate sources have had "vectored interrupt controller"
cards announced for some time but until recently have been
unable to deliver. The problem is that the vectored
interrupt cards use the Intel 8214 vectored interrupt IC
which was announced over a year ago but was not available
in volume until now. Although these cards offer many
advantages in large systems with heavy use of interrupts
and stringent response time requirements, we feel that not
enough attention has been given to the interrupt cap-
ability built into the basic Altair. This article will
discuss the effective use of this "free" resource in the
design of custom I/O interfaces. A keyboard interface
with interrupt capability will be wused as a model to
illustrate the concepts presented.

First, let us discuss what interrupts are, what they
are good for, and the three popular implementation methods
that are used in minicomputers.

Often in a computer system one has a program crunching
away in the CPU and an impatient I/O device that occasion-
ally wants attention from the CPU (and, of course, a
different section of the program). Many examples come to
mind but we will use the case where the CPU is busy
drawing on a graphics display (see TCH #1) and the
impatient 1I/0 device is a human at a keyboard typing in
commands to alter the image. In computer jargon, the
routine doing the drawing is called a "background task"
and the routine that reads characters from the keyboard
and interprets them is called a "foreground" task.

Programming this application on a system without
interrupts would involve three major routines. The first
is an initialization routine. 1Its Jjob is to set up the
initial display list, initialize the various software
flags, and enable the keyboard for the first user command.
Normally, the initialization routine is executed only
once, just after entering the program. Following initial-
ization, a branch is taken to the draw routine which sits
in a loop drawing and refreshing the graphic image from
data in the display list. Periodically, such as once per
image refresh, the draw routine should test the keyboard
to see if anything has been typed in. If so, a branch is
taken to the third routine, a command interpreter. Its
job is to read the character from the keyboard, process
it, re-enable the keyboard, and finally jump back to the
draw routine. Processing the character frequently amounts
to storing it away in memory, a very quick operation.
When a complete command has been stored, character proces-
sing would also include execution of the command sugh as
line erase, change scale, etc.

This scheme can be made to work very well but let us
look at the possible limitations. First, the keyboard
test must be placed at a point in the draw routine that is
executed frequently enough to satisfy the person at the
keyboard. Once per refresh may not be enough if the image
is  complex and the typist is fast. On the other hand,
testing the keyboard once per line drawn would not be good
either because a large percentage of CPU time may be spent
simply testing. 1In some applications, a suitable test
point in the background routine may not exist. What is
really needed is a way for the keyboard to "interrupt" the
draw routine and cause a subroutine call to the keyboard
routine. This 1is, in fact, what interrupt hardware
accomplishes.

Now let us look at how a very simple (but completely
effective in this example) interrupt scheme for the
keyboard would work. First, the keyboard interface would
have two control/status flip-flops instead of the usual
one. These would be called BUSY and DONE. These flip-
flops can be altered by both an OUT instruction and key
action and can be read with an INP instruction. Given two
flip-flops, there are four possible combinations to rep-
resent operating "states" of the keyboard. If both BUSY
and DONE are off, the keyboard is in an idle state, i.e.,
not being used. If a program needs a character from the
keyboard, it should set the BUSY flip-flop but leave DONE
off. The keyboard would now be in a "busy" state waiting
for the operator to press a key. TCH has found that a
light-emitting diode connected to the BUSY flip-flop and
mounted on the keyboard cover 1is very effective in
informing the operator that a key may be pressed. When a
key is finally pressed, BUSY is automatically turned of f
and DONE is turned on signifying that the keyboard
register now has a valid character but the program has not
yet read in the character. When the program does read the
character, DONE is turned off returning the keyboard to an
idle state. We have also found that a small speagker
inside the keyboard case connected so that it clicks when
the program reads the keyboard gives valuable feedback to
the operator, reducing keying errors. Both BUSY and DONE
being on simultaneously is a meaningless situation.

Now, how would these two control/status flip-flops be
connected to the Altair for interrupts? First, the
keyboard only requires service (reading a character) when
the DONE flip-flop is on. So to implement interrupts, we
would tie DONE to the PINT line (pin 73) on the Altair
bus. Whenever the Altair sees the coincidence of PINT and
interrupt enable (set with the EI instruction), it will
execute a CALL to location 000:070 (split octal notation,
see 1issue #8) and turn interrupt enable off. There must,
of course, be an "interrupt service" routine at 000:070 or
a jump to one elsewhere.

Using the same display example, we would still have
three major routines in a system with keyboard interrupts.
?he initialization routine would first force the keyboard
into an idle state (it may have been left in an undeiined
state.by the previous program) then it would set BUSY thus
enabling the keyboard. It would also execute an EI to
enable interrupts on the Altair. The draw routine is the
same as before but now it doesn't have to test the
keyboard flags. When the operator hits a key, BUSY will
be ;urned off and DONE turned on by the keyboard interface
logic. DONE being on and the Altair interrupts being
enabled will force execution of a CALL to 000:070 when the
current instruction is finished. The CALL stores where it
came from on the stack and disables interrupts as if a DI
instruction was executed. The interrupt service routine
at 000:070 should also save status and any registers it
uses on the stack before doing anything else. At this
point, a character is read from the keyboard, DONE is
turned off thus idling the keyboard, and the character is
acteq upon. after processing the character, the interrupt
service routine turns BUSY on to re-enable the keyboard,
restores registers and status from the stack, re-enables
ghe Altair interrupt system, and finally executes a RET
1nstrugtion. The display routine is now executing again
and since no status or registers were changed, it is not
even aware of the interruption. Of course the display was
stopped momentarily while interrupt service was in control
put generally the time is so short that the interruption
is not noticable.

So far we have discussed a system in which only one
device had interrupt capability, namely the keyboard.
Most of the fancier uses of interrupts are in systems
whe;e several peripherals can interrupt and the programmer
desires simultaneous 1I/0, that 1is, more than one I/0
device running at a time. In addition to the hardware and
software previously described, a method must be found to
identify which device caused a given interrupt, and to
resolve the conflict that exists when two or more inter-
rupts occur simultaneously. In fact, the only real
difference -between various interrupt systems is in how
these two functions are performed.

The most obvious, best, and expensive multiple inter-
rupt scheme is called hardware vectored interrupts. Re-
call the keyboard/display example in which the keyboard
service routine had to be at location 000:070. With
hardware vectored interrupts, other devices would cause
calls to other locations. 1In other words, hardware takes
care of identifying which device 1is interrupting, and
automatically branches to the service routine for that
device. This is in fact what the vectored interrupt cards
implement.

A similar system often used in minicomputers is called
software vectored interrupts. All interrupts cause the
CPU to branch to the same location. 'A common interrupt
service routine then issues an INTA instruction (INTerrupt
Acknowledge) which causes the interrupting device to
return -its device address. Using the device address, the
common interrupt service routine can set up an N-way jump
to a service routine specific to that device. This method
uses less hardware than the previous method but Iis
somewhat slower because of the time taken by the common
service routine. Both methods have the advantage that the
time between interrupt and entry to the matching service
routine (called interrupt latency time).is independent of
the number of possible interrupt sources.

What  about the case of two or more simultaneous
interrupts? In both vector schemes each device is
assigned a "priority", usually by how it is wired into the
system. When two or more interrupt requests are pending,
the device with the highest priority gets serviced. When
the service routine turns off the interrupt request in the
highest priority device and returns, another interrupt
occurs immediately from one of the remaining devices.
Eventually all interrupts get serviced, in order of
decreasing priority. Some really sophisticated interrupt
systems even allow a higher priority device to interrupt
the service routine for a lower priority device! This
feature 1is often found in process control systems and is
called "nested priority interrupts".
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The last method is called "software polled interrupts"
which is what we will be using for multiple interrupts on
the Altair. It too is often found in minicomputers, most
notably the PDP-8. Again, all interrupts cause the CPU to
branch to the same location; 000:070 in the Altair. Here
a common service routine tests (polls) the DONE status bit
of every device that can cause interrupts, one device at a
time. When one is found, a branch is taken to the service
routine for that device. The priority is determined by
the order of DONE status testing which means that prior-
ities can be changed with software. Of course the
disadvantage of polled interrupts is that interrupt lat-
ency time is longer if a lot of devices must be tested.
Fortunately, the latency time is shortest for high prior-
ity devices since they are tested first. In fact, for
most instruction sets, the first two or three devices in a
polled interrupt system may get faster service than in a
software vectored system because of the time spent in
setting up the N-way branch with the latter. On the
Altair, using polled interrupts and no memory waits, the
worst case latency time to the top priority device is 33
microseconds. An additional 12 microseconds is added for
each successively lower priority device in the polling
chain. Note that these times include saving A and status
on the stack. Simultaneous interrupts are disposed of in
the same manner as with a vectored interrupt system.
Again, they will be serviced in order of decreasing
priority until all are taken care of.

So much for theory, now let us go through the design
of a custom interface for a keyboard with all of the bells
and whistles, including interrupt capability usable alone
or in a polled interrupt system. The keyboard to be used
for illustration purposes is a Clare-Pendar unit being
sold by The Digital Group and by Herbach and Rademan.
This, incidentally, is a very nice keyboard with a full
upper and lower case ASCII character set and reasonably
good "feel". A unique feature is an "upper case" latching
mode key. When on, the alphabetics always come out as
upper case but the numerics and specials are not affected.
Wwhen off, it acts as a standard upper and lower case
typewriter keyboard.

The keyboard interface consists of three status and
control flip-flops. Two of these are, of course, BUSY and
DONE as described earlier.:G The third 1is an interrupt
enable flip-flop that applies only to the keyboard inter-
face. If it is off, the keyboard cannot cause interrupts.
If it is on, an interrupt request is generated whenever
DONE is also on as described earlier. The inclusion of an
interrupt enable for each device allows both interrupt and
non-interrupt I/0-to be mixed. It also allows interrupts
from selected devices to be inhibited momentarily if
necessary. Finally, it offers compatibility with old
programs that were not written to handle interrupts.

Three distinct I/0 instructions are used with the
keyboard interface. OUT KBSC (output to KeyBoard Status
and Control) is used to control the state of the three
control/status flip-flops. INP KBSC is used to read the
state of the same three flip-flops. INP KBDATA is used to
read the content of the keyboard output register. In our
system, KBSC was assigned to I/0 address 202 octal and
KBDATA was assigned to 203. Since these differ by only
one bit, keyboard address recognition can be simplified.
On input from KBSC, bit 0 is the DONE flip-flop, bit 1 is
the BUSY flip-flop, and bit 2 is the state of the
interrupt enable flip-flop for the keyboard. In the
‘polled interrupt system it is advantageous to place DONE
status at bit 0 since a RAR can then be used for a quick
test of DONE. On output to KBSC, three bits are signif-
jcant. If bit 0 is a ONE, all three status/control
flip-flops are reset. If bit 1 is a ONE, BUSY is set. If
bit 2 is a one, interrupt enable is set. DONE is reset
automatically when the keyboard data is read (INP KBDATA
executed). Striking a key, of course, will reset BUSY and
set DONE.

Appendix A lists the significant portion of keyboard
initialization, common interrupt service, and keyboard
interrupt service routines. The initialization routine
first clears the keyboard to an idle state and then sets
BUSY and keyboard interrupt enable. Finally it enables
the Altair interrupt system and jumps to the background
routine. Any interrupt will cause entry into the common
interrupt service routine. First, A and CPU status is
pushed onto the stack since the polling chain will alter
these. The chain itself consists of three instructions
repeated as many times as there are devices that can cause
interrupts. If the keyboard is the first device found
with DONE on, a jump is taken to KBSRV. Within KBSRV the
remaining registers are saved on the stack and the
keyboard data 1is read in thus resetting DONE. After
processing the character, keyboard BUSY is set again, the
registers are restored, and a return to the interrupted
program is executed.

One important consideration when writing programs that
may be interrupted is that the stack pointer cannot be
fooled with. This means, for example, that subroutines
cannot use INX SP and DCX SP in retrieveing arguments from
the stack. The reason of course is that an interrupt may
strike when the stack pointer has been temporarily moved
and stack data may be destroyed by the register save/re-
store code in the interrupt service routine. Instead, the
stack pointer must be loaded into H&L and then H&L used to
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access arguments on the stack. Another possibility is to
disable interrupts while the stack pointer is being
manipulated but this may make interrupt latency quite
long.

Figure 1 shows a timing diagram for the keyboard
output signals. The strobe is generated whenever a key is
pressed and the output register holds the key code stable
until the next key is pressed. Unfortuantely, there is no
ENABLE input to the keyboard so there is nothing to
prevent the operator from striking another key and chang-
ing the output register contents before the previous
keystroke is acted upon. Interrupt capability, of course,
reduces this problem by insuring fast response at all
times. Most keyboards available to the hobbyist work or
can be made to work like the Clare-Pendar unit.

The actual logic to implement the keyboard interface
is shown in figure 2. For the most part it is just an
application of the input and output interface concepts
presented in part 1. Rather than redraw all of the bus
buffers that would be required if the keyboard were the
only interface on a board, the prefix BUF will be used to
designate a buffered bus signal. If there are already a
couple of interfaces on the board, then most, if not all
of the BUF prefixed signals will already be available.

Keyboard address recognition is performed by a 7430
and two sections of a 7432 connected as NAND-NOTs. One
way to understand this configuration is to consider the
7430 as recognizing whether the address pertains to the
keyboard, i.e., either 202 or 203 octal. The two 7432
sections then distinguish between 202 and 203 by looking
at the least significant address bit.

Emerging from the mass of gates at the top of the
drawing are three signals corresponding to the three
possible 1I/0 instructions for the keyboard. The topmost
goes low when address 203 (KBDATA), SINP, and PDBIN
coincide and causes a set of 8T97's to gate data from the
keyboard data register onto the Altair DI 1lines.
Additionally it fires a one-shot which drives a speaker in
the keyboard for an audible click when the program reads
data from the keyboard. Incidentally, error beeps and
other audible signals can be easily generated with this
setup using simple program loops. The next lower signal
goes low when address 202 (KBSC), SINP, and PDBIN are
coincident. It enables another section of an 8T97 to gate
the state of the three control/status flip-flops onto the
DI lines for input into A. The last signal goes low when
an OUT KBSC is executed.

The logic around the control/status flip-flops is
actually simpler than it looks. Note that interrupt
enable and BUSY are upsidedown, that is, they are ONE when
Q- is low and ZERO when Q is _high. This saved two
inverters in our own system since BU and BU

were already available. The 7432-7408 combination
provides reset logic for the flip-flops. First, a system
reset (called PRESET in the Altair manual) can reset all
three control/status flops. However an OUT KBSC with bit
0 being a ONE can also reset all of the flops. Note that
the direct inputs to the flip-flops are used which means
that reset will prevail if a conflicting command is given.
Interrupt enable and BUSY are clocked at the trailing edge
of the strobe generated during OUT KBSC. If DATA 2 is a
one, then interrupt enable will be turned on at this time.
Similarly, if DATA 1 is a ONE, then DONE will be turned
on. 2ZERO data will leave the corresponding flip-flop
unchanged since it is a J-K type of flop. A strobe from
the keyboard will reset BUSY and set DONE. Finally,
reading the keyboard data register will reset DONE by
clocking a ZERO into it.

As mentioned before, an interrupt request should be
given to the Altair when keyboard DONE and interrupt
enable are on simultaneously. Fortunately the Altair
interrupt request line, PINT pin 73, is a "wire or" line.
That means that open collector gates may be tied directly
to the 1line in order to form the logical OR of many
possible interrupt requests. Normally the line is pulled
high (which means "no interrupt request" since it is an
inverted signal) by a resistor to +5 on the CPU board.
However a device requesting an interrupt can pull it low
with an open collector gate such as a 740l1. There is no
practical 1limit to_the number of interrupt requests that
can be tied to PINT provided the wiring is not so
extensive as to pick up noise. In figure 2 a left over
portion of a 7432 and a 7417 are used to pull PINT down
when interrupt enable and DONE are both on.

Since figure 1 shows that keyboard data is not valid
until the trailing edge of the keyboard strobe, the other
half of the 74123 one-shot is used as an edge detector.
The resulting narrow width pulse directly resets BUSY and
sets DONE. The 7413 and discrete components form a repeat
oscillator since one 1is not provided on the keyboard
itself. When the repeat key is pressed, there is a short
delay and then the oscillator starts firing the strobe
single shot thus simulating multiple depressions of the
last character key struck. Note that BUSY must be on for
the oscillator to run. With the components shown, the
delay is about 100 MS and the repeat rate is 30 per
second.

In the next issue, read/write memory interfacing will
be discussed. Although some may want to build ordinary
memory boards using the techniques to be described, the
intent is for specialized memory systems.
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APPENDIX A
* KEYBOARD INITIALIZATION
MVI A,00LQ RESET ALL CONTROL FLOPS

OUT KBSC IN THE KEYBOARD
MVI A,006Q SET KEYBOARD INTERRUPT ENABLE

OUT KBSC AND BUSY, TURNS KEYBOARD
. LIGHT ON

EI ENABLE ALTAIR INTERRUPTS

JMP MAIN  JUMP TO MAIN BACKGROUND PROGRAM
* COMMON INTERRUPT SERVICE ROUTINE
*

ORG 070Q  MUST BE AT LOCATION 000:070

PUSH PSW SAVE A & STATUS ON THE STACK

INP DEVISC TEST DONE IN DEVICE 1

RAR ROTATE DONE INTO CARRY

JC DEVISV JUMP TO DEVICE 1 SERVICE ROUTINE
* IF ITS DONE WAS ON

INP KBSC TEST DONE IN KEYBOARD

RAR

Jc KBSRV JUMP TO KEYBOARD SERVICE IF ON
INP DEV3SC TEST DONE IN DEVICE 3

JMP ERROR  SPURIOUS INTERRUPT, HARDWARE FAILURE
* KEYBOARD SERVICE ROUTINE
*
KBSRV PUSH B SAVE REMAINING REGISTERS

PUSH D ON THE STACK

PUSH H )

INP KBDATA GET CHARACTER FROM KEYBOARD, ALSO
* RESETS DONE AND CLICKS SPEAKER
*

. INTERPRET CHARACTER AND ACT ON IT

MVI A,002Q SET BUSY ON TO ENABLE FOR NEXT

OUT KBSC CHARACTER

POP H RESTORE REGISTERS

POP D

POP B

POP PSW RESTORE A AND STATUS

EI ENABLE ALTAIR INTERRUPTS

RET RETURN TO INTERRUPTED PROGRAM

SURPLUS SUMMARY

There is a new publication out which is certain}y
worthy of note in this column. It is ON-LINE. ON-LINE is
a want-ads flyer service specifically for computer nuts.
Lots of good listings. ON-LINE is issued 18 times per
year and goes for $3.75/year. For a free sample issue
write to:

ON-LINE
24695 Santa Cruz Highway
Los Gatos, CA 95030

Notice to you folks who wanted to build graphigs
systems: yoke cores for the yokes that Hal Chamberlin
offered have been delivered now that Stackpole is off
strike. The yokes are available for $15.00 with a 2 week
delivery, see issue #3 for details.

For those who are into games or just apalog inputs in
general, James Electronics has a joystick for $9.95.
Outputs are four 100K pots, two on each axis. Write to:

James Electronics
Box 882

Belmont, CA 94002
Ph. 415/592-8097

Want to try your hand at building a CRT monitor? If
so Meshna is offering an excellent kit of parts including
a 9" green phosphor (P39) tube with socket, flypack, HV
rectifier, HV cap, magnetic shield, and deflection yoke
for $20.

MESHNA
Box 62
East Lynn, MA 01904

ALTAIR 8800 BUS SIGNALS

TCH has had one unusual but worthwhile request since
our .. last issue. Two readers have asked that we list all
the signals used on _the Altair backplane. Their purpose
is, simple, though they do not own or plan to own Altairs,
they would like to utilize some of the plug compatible
boards being offered. The bulk of the signals would
eventually be explained in the Altair interfacing series
but for the sake of conciseness and convenience here they
are:

PIN NAME DESCRIPTION

1 +8V Unregulated input to 7805 regulators
2 +1l6v Unregulated input to +12 regulators
3 XRDY Anded with PRDY and goes to 8080 RDY
4 VIO Vectored interrupt regquest 0

5 VIl Vectored interrupt reguest 1

6 VI2 Vectored interrupt reguest 2

7 VI3 Vectored interrupt reguest 3

8 VI4 Vectored interrupt request 4

9 VI5 Vectored interrupt reguest 5
10 VIié Vectored interrupt request 6
11 V17 Vectored interrupt reguest 7

18 STA DSB
19 C/C DSB
20  UNPROT
21 ss

22 EDD DSB

Status buffer disable

Command/control buffer disable

Input to memory protect circuitry on mem bd
Indicates machine is in single step mode
Address buffer disable

Data out (from CPU) buffer disable

24 02 Phase two clock TTL levels

25 01 Phase one clock TTL levels

26 PHLDA Hold acknowledge, buffered 8080 output
27 PWAIT Wait acknowledge, buffered 8080 output
28 PINTE Interrupt enable, buffered 8080 output
29 A5 Buffered address line 5 (32)

30 A4 Buffered address line 4 (16)

31 A3 Buffered address line 3 (8)

32 AlS Buffered address line 15 (32768)

33 Al2 Buffered address line 12 (4096)

34 A9 Buffered address line 9 (512)

35 DO1 Buffered data out line 1

36 DO0 Buffered data out line 0, least sig. bit
37 Al0 Buffered address line 10 (1024)

38 DO4 Buffered data out line 4

39 DO5 Buffered data out line 5

40 DO6 Buffered data out line 6

41 DI2 Data input line 2

42 DI3 Data input line 3

43 D17 Data input line 7, most sig. bit

44 SM1 Latched 8080 M1 status

45 souT Latched 8080 OUT status

46 .SINP Latched 8080 INP status

47 SMEMR Latched 8080 MEMR status

48 SHLTA Latched 8080 HLTA status

49 CLOCK 2 mHz clock, crystal controlled

50 GND Logic and power ground return

51 +8V Unregulated input to 7805 regulators
52 ~-16V Unregulated input to negative regulators

Sense switch disable (special for console)
54 EXT CLR Clear signal for I/O devices

68 MWRT Write enable signal for memory

69 PS Indicates if addressed memory is protected
70 PROT Input to memory protect circuitry on mem bd
71 RUN Indicates machine is in run mode

72 PRDY Anded with XRDY and goes to 8080 RDY

73 PINT Input to 8080 interrupt request

74 PHOLD Input to 8080 hold request

75 PRESET Clear signal for CPU

76 PSYNC Buffered 8080 SYNC signal

77 PWR Buffered 8080 write enable signal

78 PDBIN Buffered 8080 DBIN signal

79 A0 Buffered address line 0 (1)

80 Al Buffered address line 1 (2)

81 A2 Buffered address line 2 (4)

82 A6 Buffered address line 6 (64)

83 A7 Buffered address line 7 (128)

84 A8 Buffered address line 8 (256)

85 Al3 Buffered address line 13 (8192)

86 Al4 Buffered address line 14 (16384)

87 All Buffered address line 11 (2048)

88 D02 Buffered data out line 2

89 DO3 Buffered data out line 3

90 DO7 Buffered data out line 7, most sig. bit
91 DI4 Data input line 4

92 DIS Data input line 5

93 DI6 Data input line 6

94 DIl Data input line 1

95 DIO Data input line 0, least sig. bit

96 SINTA Latched 8080 INTA status

97 SWO Latched 8080 WO status

98 SSTACK Latched 8080 STACK status
99 POC Clear signal during power-up
100 GND Logic and power ground return



